Editorial Introduction

The date used by social scientists are frequently multivariate. In part, this is a consequence
of a need to characterise objects of interest, such as people, houses and so on, as fully as possible
but it is also often a result of a desire to capture concepts such as social class or intelligence and
overcrowding that do not permit easy measurement along one axis of variation. In consequence,
guantitative social science has a long history of using statistical and mathematical transforms of
data matrices such as factor and principal component analysis to reduce the dimensionality of thes
data and perhaps suggest appropriate constructs that might also be used to describe individuals.

These techniques are not intrinsically visual, although the reprojection of individual cases
onto axes that define these constructs (for examples as component scores) may well create data tr
can be visualized by any of the standard techniques. There remains a need to develop appropriate
alternative visualizations for multidimensional data that are efficient in allowing the detection of
patterns in the multivariate data space. In this Case Study, Chris Brunsdon, Stweart Fotheringham
and Martin Charlton develop and illustrate three alternative projections that can be applied to
multivariate data.

It is interresting to note that although the static displays produces are in themselves useful,
they gain maximum utility when visualized in an interactive environment.
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Abstract

Although visualisation has become a ‘hot topic’ in the social sciences, the majority of visualisation
studies and techniques apply only to one or two dimensional datasets. Relatively little headway has been
made intovisualising higher dimensional data although, paradoxically, most social science datasets
are highly multivariate. Investigating multivariate data, whether it be done visually or not, in just
one or two dimensions can be highly misleading. Two well-known examples of this are the use of &
correlation coefficient instead of a regression parameter as an indicator of the relationship betweer
two variables and the use of scatterplots instead of leverage plots as indicators of relationships.

This project has therefore investigated several methods for visualising aspects of higher
dimensional (i.e. multivariate) datasets. Although some techniques are quite well-established for
this purpose, such as Andrews Plots and Chernov Faces, we have ignored these because of their
well-know problems. In the case of Andrews plots the functions used are subjective and the plots
become very difficult to read when the number of observations rises beyond 30. In the case of
Chernov faces, variables which are attached to certain attributes of the face, for example, the eyes
receive more weight in the subjective determination of ‘unusual’ cases.

Instead we have examined the use of four newer techniques for visualising aspects of highe
dimensional data setgrojection pursuit; Geographically Weighted Regression; RADVIZ;and
Parallel Co-ordinates In projection pursuit the objective is to project an m-dimensional set of
points onto a two-dimensional plane (or a three-dimensional volume) by constrained optimisation.
The choice of function to be optimised depends on what aspect of the data are the focus of
investigation. The technique therefore offers a great deal of flexibility from identifying clusters of
similar cases to identify outliers in multivariate space. A problem with projection pursuit though is
that it is difficult to interpret because the projection plots produced are of indices produced by lineal
combinations of variables which might not have any obvious meaning.

The technique of Geographical Weighted Regression usefully allows the visualisation of
spatial non-stationarity in regression parameter estimates. The output from the technique consists
of maps of the spatial drift in parameter estimates which can be used to investigate spatial
variations in relationships or for model development because the maps can indicate the effects of
missing variables. Relatively little mention is made of Geographically Weighted Regression here
because the authors have developed this technique and have written about it in a number of other
sources.

The RADVIZ approach essentially involves calculating the resultant vector, for each case,
of a series of m forces which are the m variables measured for that case. A plot of the locations of
these resultants depicts the similarity in the overall measurements across the cases. It is particular
useful for compositional data, such as percentage shares of votes in elections. One drawback of tt
technique is that it is possible to get similar looking projections from quite different basic data
properties and so the interpretation of RADVIZ needs some caution.



Finally, the parallel co-ordinates approach is perhaps the most intuitive of the four
techniques we examined in that it is essentially a multidimensional variation on the scatterplot.
Instead of two axes though, in parallel co-ordinates you can draw relationships between m axes
which are depicted as parallel lines. However, the choice of ordering of the axes is influential to the
depiction of relationships within the dataset and care must therefore be taken in selecting a
particular ordering and the depiction of the data in parallel co-ordinates can get rather messy when
large numbers of cases are involved.

1. Introduction

Suppose we have a set of $m$ continuous observed variables for each of $n$ cases, and
denote thgth observation on thigh case by;. Such a situation frequently arises when examining
social data. For example, the cases might be census wards, and the observations might be rates
computed from census variables, such as the percentage of households without cars, the percenta
of households without central heating and so on. Before calibrating models based on these
variables, it is generally useful to apply exploratory techniques to the data. Many of these
techniques are graphical in nature - for example histograms, box plots or scatter plots may be
drawn. However, these approaches are limited by the fact that they can only represent the
relationship between at most two variables at any one time. In fact, apart from the scatter plot, the
methods above only provide graphical representationsioigéevariable.

In order to decide how useful a representation is, one needs to consider the kind of feature i
data that one wishes to detect. Three common possibilities in social science datstenge
outliersandgeographical trends Clusters are distinct groupings in the data points, usually
corresponding to multimodality in the underlying probability distribution for the data. Outliers are
one-off cases that have unusual combinations of observed values, when compared to the remainde
of the sample. Geographical trends are fairly self explanatory, but it is worth noting that as well as
univariate trends, such as house prices increasing in certain areas, there could be trends in the
relationshipsbetween some variables. It is also worth noting that these trends are rarely linear.

For most types of feature, there is variability in subtlety. For example an extremely high or
low value of one particular variable would be a fairly crude type of outlier. This could be detected
using a well-established univariate graphical tool such as a box-and-whisker plot (Velleman and
Hoaglin, 1981). On the other hand, a more subtle outlier might be a point in the centre of a sphere,
when all of the other points are close to its surface. The problem here is that none of the three
coordinate values, X, X3) defining the central point are unusual in their own right, and even
worse, none of the possible coordinate value pairs such, a) @re unusual. Thus, no simple
univariate or bivariate representation could detect this outlier. The problem would become even
worse if instead of a sphere, a ten dimensional hypersphere were substituted in the previous
example! Generally, more subtlety tends to imply a greater degree of sophistication required in the
graphical representation. This leads to the statement of a fundamental prétdancan the
interactions between large numbers of variables be represented in a managable number of
dimensions?

In this Case Study, two data sets will be used to demonstrate a number of ways of
addressing the above problem. The two data sets are described in detail in Appendix A, but, briefly
the first is a set of six socio-economic variables for northern England measured at census ward
level, taken from the 1991 census, and the second is a simulated data set designed to have a
“pathological’ outlier, as discussed above. The following sections each describe a particular
approach to visualisation, giving examples using the census data set. After these sections, a numk
of specific issues are considered, including a comparison of the way each method responds to the
synthesised data.



2. The Projection Pursuit Approach to Visualisation

2.1 Context

Suppose, for a set of casesyariables are recorded. Then each case can be thought of as a
point inm-dimensional space. Unfortunately, unlasg8e 3 it is not possible to view these points
directly. However, it is possible fwojectanm-dimensional set of points onto a two-dimensional
plane, or a three-dimensional volume. Here we will restrict the problem to projections onto two-
dimensional planes. To visualise the concept of projection, figures 1 and 2 should be considered.
In both figures a rectangular “screen' is shown, either above or to the right of a set of three
dimensional data. Imagine a very bright light on the other side of the data points. The shadows
thrown on the screen from the data points are the projection. The dotted lines in the diagram link
the data points to their projected images.

Figure 1: Example of point projection (1)

In figure 1 the data points are projected onto a plane to the right. Here the projected image
shows two distinct clusters of points. In figure 2 the same data points are projected onto a plane
above. Here the projected image shows only a single cluster of points. Obviously in this case the
projection is fromR® to R?, but similar (and sometimes more complex) phenomena occur when the
projection is frorR™ dimensions anch > 3.

Figure 2: Example of point projection (2)



The above example demonstrates that different projections of the same data set can reveal
different aspects of the data structure - indeed some projections can fail to reveal any structure.
There are in fact an infinite number of possible projections to choose from, so which one should be
used?Projection pursuit{Jones and Sibson, 1987} is concerned with resolving this kind of
problem.

2.2 The Projection Pursuit Method

To see how this technique operates, it is first worth noting that projection&ftemi?? are
linear mappings. Thus, X = {x;} is a matrix whosei(j)th element is thgh variable for
observatiori, we can write the general projection frétfito R? as ¢, z2) = (Xa', Xb'). Herea and
b aremrdimensional row vectors defining the linear transform, ammhdz, aren-dimensional
column vectors representing the points on the projection screen. The prime denotes transposition.
Choosing a projection is now a matter of choosimgdb.

The next problem is to decide what kind of feature one wishes to detect. When this decision
is made, one attempts to measure the degree to which this feature is exhilaiter)in Call this
measurd(zi, z) It is sometimes called thedex function For example, suppose one wishes to
detect clusters. A common test statistic for clustering in two dimensional datarisahenearest
neighbour distanc@INND). Lower values of this statistic indicate greater clustering. Thus, here
I(z1, 2) is the MNND for the data set;( z)). Noting that the expressid(.,..) can be written in the
formI(Xa', Xb"), the projection choice problem can be thought of as an optimisation problem in
whicha andb must be chosen to minimise Essentially, this is the projection pursuit process.

At this stage, however, some careful thought should take place. Clearly the nearest
neighbour distance index is scale dependent. Multiplyiagdb by a constant will also multiply
the MNND by this factor - so that one can males small as one likes with an appropriate choice
of constant. This problem can be avoided by adding the constrain{ &nalz, are standardized -
that is that they both have a mean of zero and a variance of one. Also, it is helpful to add the
constraint tha; andz, are not correlated. This ensures that maximum information is given in the
two dimensional plot, in the sense that if two variables are correlated, they are “sharing' some
underlying one-dimensional feature pattern rather than each representing different patterns.

The projection pursuit algorithm is thus equivalent to a constrained optimisation problem.
The difficulty with the specification given is that the constraints are given in termaiodz,
rather thara andb. However, suppose each variabl&ims mean-centred and then transformed to
its principal components - and the principal components are standardised so that each has a variar
of one, giving a transformed mati@x Q is a linear transform of, sayXP, whereP is anm by m
matrix, so that a linear mapping @fis also a linear mapping &f. Thus, we can re-write the index
in the forml(zy, z) = 1(Qc', Qd'). In this case, the column vectarandd take the same form as
andb. In factPc'=a' andPd' =b'. The advantage of the re-stated problem is the fact ttiatf
1,d'd =1 anac'd = 0 thenz; andz, will be uncorrelated, have zero mean and variance of one.
Thus, if constraints are imposed ®andd thenz; andz, automatically satisfy the constraints
proposed above. Thus, the projection pursuit problem may be stated:

Minimise 1(Qc,Qd )

Subject to c'c=1and
d d=1and
c'd=0

This is a standard form for a constrained optimisation problem. Computationally, the
difficulty of this problem depends on the index functiompplying the method with as the
MNND is fairly intensive, mainly because it involves finding the nearest neighbour of every point
in the projected data set.



In figure 3 the result of applying this technique to the census data is shown. Due to the
nature of the index function, the rotation of the point pattern obtained is arbitrary, so there is no
clear interpretation of the individual axes in the plot.

. Progection Mirimeing WD indks:

Figure 3: Minimised MNND projection of census data

No obvious clusters exist in the plot, suggesting perhaps that the data is not bimodal in any
way detectable by projecting onto a two dimensional plane. However, some features are very cleal
most notably a “spur’ in the lower part of the plot.

2.3 Interpretation

Having obtained an optimal projection, it is essential that this can be easily interpreted.
Since the projection is a linear mapping, interpretation is fairly straighforward. Having optimised in
terms ofc andd, one may work backwards to obtamndb. If jth individual elements of these
vectors arey; andb;, then a unit change in th original variable causes a changglg) in the
projection space. Since the projection is linear, this statement is independent of the values of othel
variables. Also due to linearity, a change by an amkimthejth variable leads to a chande(
kb) in the projection space. Using this fact, one can plot the "‘change vectors' for a given point in
the plot in projection space when each of the initial variables changes by one standard deviation.
This is illustrated in figure 4.
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Figure 4: Minimised MNND projection of census data - Interpretation Plot



This gives some clues as to the variables causing the “spur' in the projection shown in figure
3. Although a number of possible variable combinations could cause this, figure 4 suggests that
very high unemployment levels or low crowding could cause this, perhaps with low levels of the
other variables.

2.4 Choice ofl

At this point, some further discussion about the choice of the index funigtioight be
appropriate. The example above was chosen to maximise clustering in the projected data image.
However, other functions could be chosen to reflect other desired properties of the projection.
Another important data feature is the presence of outliers. One way of ‘rewarding' projections that
produce outliers is to negate the previous measure, or equivalemaximisehe MNND subject
to the previous constraints. To see this, note that outliers are a long way from their nearest
neighbours. When there are a large number of outliers, or one or two very extreme ones, the
MNND will tend to be large.

The result of this approach is shown in figure 5, together with an interpretation plot in figure
6. The spur feature has now completely disappeared, and the projected points now form a more
symmetrical pattern, but a number of outliers are visible in many directions around the outside of
the cloud. The interpretation plot should help in identifying the nature of the outliers as in the
previous example.
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A further possibility is to consider means of highlighting geographical trends. In this case,
the idea of “projection’ takes a different form. Here, a one-dimensional projection iz segdyut
the value of this projection is shown on a choropleth map. If this approach is taken, the projection
should be chosen to emphasize geographical trends. One way of making this choice is to consider
thespatial autocorrelatiorof the trends. To find trends which vary smoothly over the geographical
study area, one needs to maximise the degree of spatial autocorrelation of the index. Similarly, to
highlightlocal differencesn data, one needs minimisethe spatial autocorrelation. Each of these
goals could be achieved by definingy terms of spatial autocorrelation. Morans (Moran, 1948}
measure of spatial autocorrelation may be written as




wheres; is one if zones andj are neighbours, and zero if they are not. Neighbourhood may be
defined in a number of ways. Typically zones are neighbours if they share a common boundary, or
if their centroids are less than some distance apart. #hkies are standardised to have variance
one and mean zero, then the above expression simplifies to

23

If we are attempting to maximise or minimise this expression, the denominator may be
ignored, since it is a positive constant. Thus, for projection pursuit designed to high geographical
relationships, a suitables given by

Table 1:Projection Persuit Coefficients - Autocorrelation

Variable Maximuml Minimum |

CROWD 0.516 0.952
DENSITY -0.296 -0.652
LLTI 0.555 -0.396
SCI 0.362 -0.630
SPF -0.048 -0.317
UNEMP 1.098 0.111

Thus, here the projection pursuit problem can be stated as

Minimise or Maximise 1(Qc)
Subject to cc=1

since in this caskis simply a quadratic expression, and there is just one constraint, the
computational overheads are much lower than for the MNND-based problem.

Interpretation of the single-dimensional projection is probably best done by tabulating the
elements o, possibly scaling by the standard deviation of each variable. This shows the degree
and direction of change that would be seenifra given variable were to increase by one standard
deviation.

Applying the method to the census data gives the maps in Appendix B, which show indices
for maximum and minimum spatial autocorrelation respectively. The coefficients of projection
(adjusted for scale) are given in table 1. Here it can be seen that the maximising map mostly picks
up an urban/rural trend, whereas more subtle differences are picked out in the minimising map. In
particular it highlights the way some nearby rural areas differ. The strongest contributing variables
in the maximising case are CROWD, LLTI and UNEMP. It is suggested that this linear
combination of variables is perhaps a useful indicator of 'urbanness' in the sense that high values
tend to coincide with inner cities and low values with rural areas. On the other hand, the



coefficients for the minimising case give a very different index. This index is useful for
differentiating between nearby places, and is more strongly influenced by variables that are more
spatially variable. A good example is SPF which has a much greater weighting in the minimising
index. Although there is no strong geographical trend in the proportion of single parent families, it
can be used as a means of differentiating between nearby places. Another variable that does this i
CROWD which is possibly a differentiator between affluent and poor rural communities.

2.5 Geographically Weighted Regression

At this point, another trend-based method of analysis should be considered briefly. This is

the method oGeographically Weighted Regressi@WR), see for example Brunsdenal.

(1996). In this approach, a multivariate regression is carried out, but instegtbb&bmodel,

localised models are fitted around a number of points in the study area. For example, using the
LLTI data set from the previous section, a number of sample points in northern England are choser
and, taking a circle drawn around each point, a “local' regression is calibrated. Typically, this is a
weighted regression, and the weight given to each observation, in this case a Census ward, decays
with the distance from the sample point. Thus, eventually, a different regression is calibrated for
each sample point. Mapping the way the regression coefficients change for a series of sample
points spread throughout the study region shows geographical changes in the relationship betweer
the variables. Typically the sample points are placed on a regular grid, or centred on the areal unit
centroids. Note that it does not matter if the circles centred on the points overlap; indeed this allow
smoother trends in the regression coefficients to be mapped.

Note that this differs from the projection pursuit using Moran's-Il in two major ways. First,
whereas the projection pursuit method produces just one map, (or two if Moran's | is both
minimised and maximised), GWR produces a map for each regression coefficient, plus one for the
intercept coefficient. Secondly, project pursuit treats all variables identically, whereas GWR
requires that one variable has to be “singled out' as the dependent variable. A comprehensive
example of the technique is given in Brunse@oal. (1996). Although this method does not fall
directly into the projection pursuit category, one way of viewing the regression model is as a "best
fit' linear projection, and this is a useful approach to finding geographical trends in such projections

3. The RADVIZ Approach to Visualisation}

Like the previous approach, the RADVIZ method (Ankerst et al., 1996) maps anset of
dimensional points onto two dimensional space. However, in this case the mapping is nonlinear.
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Figure 7: The Physical System Basis for RADVIZ



To explain the RADVIZ approach, it is helpful to imaging a physical situation. Suppose
points are arranged to be equally spaced around the circumference of the unit circle. Call these
pointsS; to S,,. Now suppose a set ofsprings are fixed at one end to each of these points, and
that all of the springs are attached to the other end to a puck, as in figure 7.

Finally, assume the stiffness constant (in terms of Hooke's law) fihth&ing isx; for one
of the data points If the puck is released and allowed to reach an equilibrium position, the
coordinates of this positionyi(v;)" say, are the projection in two dimensional space of the point
(Xi1, ...,xim)T in mdimensional space. This, iii.(vi)T is computed for =1 ... n, and these points
are plotted, a visualisation of thedimensional data set in two dimensions is achieved.

To discover more about the projection fr&f— R?, consider the forces acting on the puck.
For a given spring, the force acting on the puck is the product of the vector spring extension and th
scalar stiffness constant. The resultant force acting on the puck fosatings will be the sum of
these individual forces. When the puck is in equilibrium there are no resultant forces acting on it
and this sum will be zero. Denoting the position vecto§ & S, by S; to Sy, and puttingy; = (u;,
v)" we have

Z(Sj_ui))% =0
j=Lm

which may be solved far; by

I
=
9]

u.

where

Thus, for each caseu; is simply a weighted mean of tg¢s whose weights are the
variables for casenormalised to sum to one. Note that this normalisation operation makes the
mapping fromR™ - R? nonlinear.

Viewing the projection in this explicit form allows several of its properties to be deduced.
First, assuming that thg values are all non-negative, eaghies within the convex hull of the
pointsS; to Sy,. Due to the regular spacing of these points, this convex hull will besated
regular polygon. Note that if some of thevalues are negative this property need not hold, but that
often each variable is re-scaled to avoid negative values. Two typical methods of doing this are the
local metric (L-metric) rescaling, in which the minimum and maximum valugsfof each are
respectively mapped onto zero and one respectively:

W X; —min(x, |[k=])
T max(e, [K= 1) - min(x, 1K= J)

and the global metric (G-metric), in which the rescaling is applied to the data set as a whole, rathe
than on a variable by variable basis:



s X; — mMin(x)
X = .
max(x, ) — min(x,)
in each case, the rescabgdvalues will all lie in the interval [0,1].

The weighted centroid interpretation of the projection also allows some other properties to
become apparent. If, for a giventhe values o%; are constant); will be the zero vector. This is a
rather strange property, since it implies that observations in which all variables take on a very high
constant value (once re-scaled) will be projected onto the same point as observations in which all
variables take on a very low constant value. More generally, it suggested that observations which
take on very similar values for re-scaled data will be mapped into regions close to the origin.

A RADVIZ projection for the census data is shown in figure 8. The result is superficially
similar to the maximised MNND projection pursuit, showing a circular cluster of points and
identifying outliers around this.
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Figure 8: A RADVIZ Projection of the Census Data

For general data sets this property could lead to difficulties in interpreting the plots, but it is
particularly useful when considerimgmpositionageographical data. Suppose the population of a
geographical region is classified intocategories, for example, those aged under 18, those aged 18
to 65 and those aged over 65. Another example would be voting data for an electoral ward where
the categories are the parties which each constituent voted for. A compositional data set is one in
which each of the variables represents the proportion (or percentage) of each category for each are
Numerically, the most notable property of such data is that for each case the variables sum to 1 (or
100 if percentages are used). This constraint suggests that the only waynthatrables can be
equal is when they all take the valuen1/Note, however that even in this case, the factui=a0
does not imply that all proportions are equal. For example, if a pair of variables are represented by
diametrically opposite points on the circle, and the proportions are 0.5 in each of these, then this
will also giveu; = 0. Another aid to interpretation for compositional data is that if an area consists
entirely of one category then the corresponding variable will take the value 1, while the others will
take the value zero. This implies tliawill lie on the vertex of the regulan-sided polygon
corresponding to that category.

In the casen = 3 for compositional data the RADVIZ procedure produces the compositional
triangular plot used for various purposes - notably by Dorling (1990) and Coeirdled 996) to
illustrate voting patterns in Britain in a three-party system. If we were to extend the analysis to look
at more than three parties (for example by considering the nationalist vote as a fourth option) then



RADVIZ provides a natural extension of this concept. The main difficulty when moving beyond m
= 3 for compositional data is that points on a RADVIZ plot no longer correspuqdelyto (X,

.. ,%;j) for a given case, more than one composition can project onto theisase&iscussed
above.

It is also interesting to note that for a given set of variables, there are several possible
RADVIZ projections, since the $m$ initial variables could be assignedSp... S, in m! different
ways. If we are mostly interested in identifying clusters and outliers, a number of possible
projections will be essentially equivalent, since they will be identical up to a rotation or a mirror
image. To see how many non-trivially different permutations there are, we need first to note that
any permutation can be rotatedvays (i.e. rotation through 360degrees, by 2(268) degrees
and so on up taf- 1)(360Mm) degrees, and of course the identity rotation through zero degrees),
and so we need to divide th# by m. We then note that any permutation can be reflected in two
ways (i.e. mirror imaged or left alone) so the figurenof (L)! must be halved. Thus,niis the
number of variables, there are effectivaty-(1)! / 2 possible RADVIZ projections.

One way of deciding which of these should be used is to use an index, in a similar manner tc
projection pursuit in the previous section. In fact, the same indices could be used - for example
maximising the variance of thg 's or using one of the nearest-neighbour distance based criteria. In
this case, the optimisation is a discrete search over a finite number of possibilities, rather than a
continuous multivariate optimisation problem as in projection pursuit. It should be noted that the
number of options to be search increases very rapidlymithorse tham?), and this has
implications for computation. Clearly investigation into optimisation heuristics for this problem is
necessary if it is to be applied in cases wimerg very large.

4. The Parallel Coordinates Approach to Visualisation

In this final section on approaches to visualising multidimensional data sets, a very different
approach is taken. In both of the previous techniques, a pamtlimensional space was mapped
onto a point in 2-dimensional space. In this approach, a pamrtimensional space is represented
as a series aoft1 line segments (Inselbeeg al, 1987) in 2-dimensional space. Thus, if the
original data observation is written ag, (., ... Xy) then, its parallel coordinate representation is the
m-1 line segments connecting the pointg1(2x,), ... (mxx}. Each set of line segments could
be thought of as a “profile' of a given case. The shape of the segments conveys information about
the levels of then variables. This is illustrated in figure 9. Typically, continuous variables will be
standardised before a parallel coordinate plot is drawn.
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Figure 9: A Parallel Coordinate Representation of One Case
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Figure 10: A Parallel Coordinates Plot

To view an entiren-dimensional data set one simply platssuch profiles on the same
graph. This is illustrated in figure 10. For large data sets, the appearance of such a plot appears
confusing, but can be used to highlight outliers. However, the real strength of the technique can b
seen when subsets of the data are selected, usually on the basis of one particular variable.

To see this, consider figure 11. Here, the subset of the data in the lowest decile of the
variableLLT! is shown in black, and the remainder of the dataset in grey. Looking at the relative
locations of the black and grey lines shows the distribution of the data values in the subset in
relation to the entire data set. Obviously, all of the black lines pass through the lowest section of
theLLTIl axis. However, looking at the locations of the black lines on the other axes shows
whether the low values of this variable tend to be accompanied by any notable distributional
patterns in the other variables. From the plot, it may be seen that often there are also low values o
DENSITY andUNEMP.

CROWD CENEBITY LL.TI = ] SPF UHEKF

Figure 11: Parallel Coordinates Plot, Lowest Decile of LLTI Highlighted

Parallel plots may also be used to detect outliers in two dimensions. Again looking at figure
11, there are a few cases in the subset WBENSITY is unusually highgiventhe low value of
LLTI . Itis also apparent that this phenomenon does not occur with the vaiNibBMP. This
technique can also be used, at least sometimes, to detect three-dimensional outliers. For example
the black line joining a high(ish) value $C1to a similar value o8PFis unusual: first in a two-
dimensional sense because it appears unusual that the two vdr@ablesve high values, and
second in three dimensions because we can also see that this line is black and therefore associate
with the lowest decile dfLTI .



Outliers detected in terms of the lines connnecting pairs of axes in the parallel system pose
an interesting problem. Although the method provides a striking image of outliers between two
variables, it only works if the two variables have neighbouring parallel axesn ¥amables, there
are only (1) such neighbours possible, but thereraf®-1)/2 possible variable pairs. Thusy(
1)(m-2)/2 pairs cannot be displayed. The problem is similar to the ordering problem in RADVIZ,
that is the patterns that parallel coordinate plots yield depend on the ordering of the axes. In this
case, there amal possible orderings, although if we assume that reversing the order of the axes
generates equivalent patterns, this lean'é? possibilities. Again, as with RADVIZ, we are left
with a combinatorial computational problem.

One approach to this might be to maximise the variability of the centre points of lines
between pairs of variables. If these are well-separated then this makes patterens or outliers easier
detect. Suppos@ andv,are variables with neighbouring axes, then the midpoint on the plot will
have a height ofv{ +V,)/2. The horizontal coordinate is not of interest, as it will be fixed for all
values ofv; andv,. Suppose also thet andv, are standardised, and so have variance of one.

Then, the variance of the height will be

1+p
2

wherep the the correlation betweenandv.. If these quantities are added together for each pair of
adjacent axes, an index score is created. Choosing a suitable ordering is then a matter of
maximising this quantity. In fact, the problem may be simplified by replacing the above expression
with p, or changed to a minimisation problem by replag@mwgth 1- p. In fact, this problem is
equivalent to the travelling salesman problem. To see this, regasidetween pairs of variables

as lengths of trips between towns, and axis ordering as visit ordering for the towns. Total distance
is then equivalent to total A-s, which is minimised in the travelling salesmen problem. A large
amount of research into this mathematical problem has been carried out, and, although solutions ai
possible they require large amounts of computational effort. It is also worth noting that other
indices besides the correlation sum could be used to choose an ordering, so that, for example,
clustering of centre points into multimodal groups could be rewarded, in a similar manner to
projection pursuit. So long as the measure used is a sum of two-way interactions between the
variables, the equivalence to the travelling salesman problem applies.

5. Making Use of User Interaction

All of the above methods may be enhanced by the introductiosenfinteraction In
particular, the use diihked plots where the output from any of these techniques could be linked to
another view of the data, using the techniqueaté brushing see for example Tierney (1990).
Two patrticularly useful techniques are thosdéirdded mapsandslicing. The first of these is
documented in Brunsdon and Charlton (1996), and in short involves highlighting zones on a map
corresponding to selected points on a scatterpleicerversa This is particularly useful if one of
the projection-based techniques is used. For example, one can check whether the spur in the
minimising MNND projection pursuit corresponds to any particular geographical pattern, as in the
screenshot in figure 12.

Another useful interactive approactsiging. In this case, points in a scatterplot are
selected according to the value of an auxiliary variable. This value is controlled by a slider button,
as in the second screenshot, figure 13. The value shown in the slider is the central point of a decile
“slice' of the data, based on the values of the varidblé¢ - clearly any other variable could also
be used. Moving the slider causes the highlighted points in the scatterplot to change - so one can



see which regions of the projection correspond to high and low values of the slicing variable. This
method helps to interpret the patterns seen in projection-based methods such as projection pursuit
and RADVIZ.
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Figure 12: A Map-Linking Screenshot

E _—.-— P01 S ————1

Halis: om0

= [ R e

il E] 4 & E

A Slicing Sereenghol

Figure 13: A Slicing Screenshot

6. Finding Outliers - the Synthesised Data Set

Each of the methods of visualisation outlined above was applied to the synthesised data set
described in the appendix. As suggested in the appendix, this data set was deliberately chosen to
exhibit “pathological behaviour, in terms of an outlier. This outlier can be thought of as a sixth
order outlier, in that no five-way combinations of the variablet® Vs appear to have any unusual
observations. The outlier lies on the six-dimensional point (0,0,0,0,0,0), whilst all other
observations satisfy12+V22+V32+V42+V52+V62=1.

In figure 14, the parallel coordinates plot of the data is shown. As is typical of the
technique, it is subset selection and highlighting that brings out patterns in the data. Here, the
darker lines correspond to cases whes<p.1. From this, it is clear that an unusual valu¢;of
occurs. In fact, selecting this line only would then reveal the straight line through the zero point of
all six parallel axes. Thus, the parallel coordinates plot has shown reasonable success in detecting
the outlier.

Note that the parallel axes are calibrated in ternssaofdardisedvariables, so that the
ranges folV; to Vg extend beyond the range from -1 to 1.



Figure 14: A Parallel Coordinates Plot of the 'Pathological' Data Set

Next, consider the projection pursuit approach to the data set. The results are shown in
figures 15 and 16. Clearly, these do not show any obvious outliers. It is possible that the problem
here is that, due to the nature of this particular data set, there are no linear projections that are able
to identify the point at the origin. If one considers the case in three dimensions, it is possible to
envision the difficulty.
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Similarly disapointing results are experienced with RADVIZ (see figure 17). Itis likely that
similar arguments occur here (although the mapping from six to two dimensions is no longer
linear).

It seems that unmodified projection-based approaches do not work well with the data set
generated here. However, it is possible that some more flexible non-linear approaches might be
helpful. For example, if one were to analysedfjearesof the variables, the outlier would be much
more easily detected. To see this note Yhan,2. Va2 Vi2+Vs2, Ve” is equal to one for all points
except the outlier, when the expression is equal to zero. However, one would have to have very
strong prior knowledge to consider using this particular transform!



It should also be noted that the slicing technique discussed in the previous section might
have helped to highlight the outlier in the projective methods. It is significant that the parallel
coordinates plot showed few patterns until a subset was selected and highlighted.
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Figure 17: RADVIZ Plot of the 'Pathological' Data Set

7. Conclusions

This study has shown that there are several possible ways to visualise multidimensional dat:
and that each has merits and pitfalls. The projection pursuit approach, particularly in the
autocorrelation form, is able to identify patterns in linear combinations of the data that perhaps
would not be unearthed with any of the other techniques. This is particularly true of geographical
patterns. These can either be discovered in a very direct way (the autocorrelation approach) or by
using packages such as XLISP-STAT to link two-dimensional projections with maps. The
technique also offers a great deal of flexibility. The index fundtman be chosen in many
different ways, and in each case an optimal projection for serving some very specific purpose can
be found.

On the negative side, the technique is perhaps one of the hardest to interpret. This is mainly
due to the fact that the projection plots produced are of indices produced by linear combinations of
variables - and one has the problem of assigning meaning to these indices. Interpretation plots suc
as figues 4 and 6 are of some help, but they still leave some ambiguity. This is perhaps inevitable,
as any linear projection from a higher dimensional space onto a lower one is likely to map several
points in the domain space onto the same point in the image. For the method to come into its own,
it is usually necessary to use the projection as a single view in a system of linked views in an
interactive system, as suggested above.

The RADVIZ approach is also a projective technique, and so many of the comments that
might be applied to projection pursuit also apply here, particularly those relating to the
interpretation of plotted patterns. However, when exploring compositional data RADVIZ comes
into its own. In this instance, the patterns have a very intuitive interpretation in that points near to
the vertices of the regular polygon are correspond to observations dominated by a particular
component of the compositional breakdown. If the vertices are labelled by their corresponding
variables, as in figure 8, then it becomes immediately clear which variable it is. It is also worth
noting that the RADVIZ projection of the census data was quite similar to the maximising MNND
projection, but required considerably less computational effort to achieve.

The parallel coordinates approach is perhaps the most intuitive. The labelling of the axes
makes it very clear exactly what values individual variables take - a property which none of the
other approaches have. As with RADVIZ, the choice of representation for a given data set is not



unique, and the problem of choosingaatimal representation is a difficult one. In this case, a

choice of the ordering of the parallel axes must be made. However, in the author's experience, nor
optimal choices of parallel coordinate axes can work reasonably well such that in many cases sub-
optimality may not imply unacceptably poor quality. Perhaps a useful compromise is to allow the
user to swap the axes interactively, and explore more than one possible axis ordering. Indeed, a
similar approach could be applied with RADVIZ.
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9. Appendix A - Data Sets Used in the Study

In this study, two datasets are used. The first of these is derived from the 1991 UK census,
at ward level for the Northern region of England, using variables as follows:

LLTI The percentage of persons in households in each ward where a member of the household h
some limiting long-term illness. This is the response variable. Note that to control for
different age profiles in areas, this is only computed for 45-65 year olds - an age category
that is perhaps most at likely to suffer LLTI s a result of working in the extractive industries.

CROWDING This is the proportion of households in each census ward having an average
of more than one person per room. This is an attempt to measure the level of cramped
housing conditions in each ward.

DENSITY  This is the housing density of each ward, measured in millions per square kilometer.
This is intended to measure "Rurality' of areas. Note the differences between this and the
previous variable - a remote village with poor housing conditions may well score low in this
variable, but high in the previous.

UNEMP The proportion of male unemployment in an area. This is generally regarded as a
measure of economic well-being for an area.

SC1 The proportion of heads of households whose jobs are classeciahclass in the
Census. These are professional and managerial occupations. Whilst the previous variable
measures general well-being, this measures affluence.

SP-FAM The proportion of single parent families in an area. This is an attempt to measure the
natureof household composition in areas.

The second dataset is a synthesised, six-variable data set. The variables are named V1 to
V6. Each data point lies on the surface of a six-dimensional hypersphere of radius one, with the
exception of one outlier, which lies at the centroid of the hypersphere. This outlier is particularly
“pathological' in that in any five-dimensional subset of the six variables, the value of this outlier is
not particularly unusual. While it is uncertain how often this situation will happen with ‘real life'
social science data, it does provide a yardstick for assessing each visualisation method in a worst
case scenario.

The data may be generated as follows:

Note that a point on the circumference of a unit circle may be parametrised in terms of a
single variabled by the expression

(sin(6),cos@)

If theta is a uniform random variable, then random points on the circumference may be generated
from this expression. Call this express@iif). Now letC, (6, .. 6,.1) be a point on the surface of
ann-dimensional unit hypersphere. For example=8, then G(6,, &) is a point on the surface of

a sphere. Recursively, we can parametise by

Ch+1(6: ... 6) = sin(@,) Ci(6:... Br.1)*cos(6h)



where * is a vector concatenation operator such ¥yt ¢ = (x,y,2. One can check inductively
that if the squared elements@f sum to one, then the squared elemen,ofalso sum to one.
Since this can be checked directly @y it is true for alin > 2 also.

Thus, the surface on andimensional sphere can be parametrised by a ve#tord,.;). By
generating uniform random numbers for the elements of this vector and applying this transform, it i
possible to generate points on the surface of the hypersphere. The simulation is then finalised by
adding the origin point as the outlier in the data set.



10. Appendix B

. <-1.045001
| -1.045001 - -0.734001
-0.734000 - -0.448001
[ -0.448000 - -0.190001
I -0.190000 - 0.130999
B 0.131000 - 0.544999
B 0.545000 - 1.275998
B >-127599%

Maximise Moran’s



i

B < -1,123001

.~ -0.579000 - -0.235001
| -0.235000 - 0.065999
B 0.066000 - 0.330999
B 0.331000 - 0.605999
I 0.606000 - 0.953999
B >-0954000

Minimise Moran’'s 1



