
REPEAT WHILE…

FALSE

TRUE

testCondition

process(es)

set count = 1
REPEAT WHILE count < maxVal
 doProcess A
 doProcess B
 doProcess C
 set count = count + 1
END REPEAT

testCondition

process A process B

TRUE FALSE

IF THEN… ELSE…

testCondition

process A process B

TRUE FALSE

IF THEN… ELSE…

testCondition

process A process

TRUE FALSE

IF the clickLoc = 1 THEN
 doSomething
ELSE
 doSomethingElse
END IF

TRUE

FALSE

testCondition

ocess A

TRUE

FALSE

testCondition

process A

TRUE

FALSE

testCondition

process A

TRUE

FALSE

testConditi o

process A

the actorList
the backColor of sprite
the clickLoc
the date
the drawRect of window
the enabled of menuItem
the fixStageSize
the keyUpScript
the locH of sprite
the mouseDown
the visible of s prite

process A

process B

process C

process A

process B

process C

process A

process B

process C

process A

process B

process C

startMovie

Learning To Program in Lingo

This handbook and the accompanying digital material provide an
introduction to using the Lingo programming language embedded
in Macromedia Director.

Author Ian Phillips DipAD, PGCE, MSc
Limestone Cottage
Pooles Lane
Charlbury
Oxfordshire OX7 3RT

Date April 1997

Edition 2.0

Page ii

About this handbook
This handbook provides an introduction to using the Lingo
programming language embedded in Macromedia Director (all
trademarks acknowledged). It should be used in conjunction with
the accompanying Director movies to support classes and
workshops in Lingo programming. This revision covers those
changes in Lingo and the Lingo programming environment
introduced with Director 5 which are of particular interest to the
novice programmer.

About the author
Ian Phillips was until recently Principal Lecturer in Computer-Aided
Art and Design (60% FT) at Coventry University. He now works
freelance as a consultant designer, developer and trainer
specialising in learning materials.

He started teaching postgraduate students to use Director in
1993 and in 1994 wrote an AGOCG case-study comparing Director
and HyperCard. He presented a paper and chaired a conference
workshop on teaching programming to art and design students at
CADE 95 and presented a paper on computer program visualisation
in art and design computing at Eurographics UK in 1996.

He recently completed a prototype, which integrated a CD-ROM
utilising Director movies with an Internet site, for a major publisher.

Acknowledgements
Thanks to: all participants in the workshop on programming in art
and design education at CADE 95; John Jostins for advice on
Director project planning; Mark Peden for lots of help with Lingo;
Simon Turner for occasional but valuable help; students on the
postgraduate programme at Coventry School of Art and design for
trying out the movies; Rosey Bennett for editorial input, and
teachers such as John Vince, Simon Ritchie, Garry Bulmer and Alan
Chantler who showed me that programming could be explained.

Feedback
The author welcomes constructive criticism of these materials,
which should be emailed to:

iphillips@patrol.i-way.co.uk

Fees for support and further training can be negotiated.

Copyright
Copyright  1996 and 1997 by Ian Phillips.
All rights reserved. This work may be copied in its entirety, without
modification and with this statement attached, for non-commercial
use in education. Redistribution in part or with modifications is not
permitted without advance agreement from the copyright holder.

Print record
This document was printed on 25 April 1997.

Page iii

Contents

Introduction 1
Why learn to program in Lingo? 1
Objectives and intended outcomes 1
Approach and methods 2
Target audience 2
How the project started 3
Summary of changes from Edition 1.0 3
Looking forward to Director 6.0 4
Limitations of the materials 5

How to use the materials 6
Assumed knowledge and equipment 6
Production note 7
Organisation of the materials 7
Accessing the movies 7

Getting started with Lingo 9
Determine your objectives 9
Assess your knowledge and experience 9
Set up your working environment 9
Using the Message window 10
Coping with the unknown 11
Learning more about Lingo elements 12
Using the Message window with cast and score 12
Summary 13

Algorithm development 15
What is an algorithm? 15
Where do I start? 15
Stepwise refinement of the algorithm 16
Variables 19
Controlling execution flow 24
Summary 26

Page iv

Basic scripting 27
First things first 27
Learning the jargon 27
What’s in this section? 28
Useful things to know 28
Controlling execution flow in scripts 29
Other sources of information 31

Program visualisation 32
What is program visualisation? 32
What methods are used in these materials? 32
Strengths and weaknesses of visualisation methods 33
Visualising data 39
Summary 39

Fixing broken programs 40
Why do programs break? 40
Tools for fixing programs 40
Summary 44

Example movies 45
What’s in the movies? 45
Further work 45

Annotated Bibliography 46
On Lingo 46
On-line help and information 47
On programming in general 48
On object-oriented programming 49

Appendix One - Update 50
Summary of Lingo-related changes in Director 5 50
Understanding internal and external casts 60
Xtras 61

Lingo Programming Learning Materials Page 1

Introduction

Why learn to program in Lingo?
Director is a powerful, flexible and full-featured piece of software
and its method of organising and integrating media components
over time by direct manipulation in “cast” and “score” windows is
fairly easy to understand. However, the control offered by the score
is insufficient for many purposes. That is why the “scripting
language” called Lingo, which offers more control, is included in the
Director package.

Providing interactive capabilities and controlling the behaviour
or properties of sprites on the stage often entails going behind the
scenes and writing Lingo scripts. These are really small computer
programs and although you can write simple scripts without
knowing much about programming, you will soon get into
difficulties if you don’t acquire some basic understanding.

Learning to program computers is not easy. I explored this topic
in more detail in Computer Program Visualisation in Art and Design
Computing [PHILLIPS, 1996] but for the purposes of this handbook
it is only necessary to note that, unless you can employ a
professional programmer, there is currently no alternative to
learning to program in Lingo if you wish to make full use of
Director.

Objectives and intended outcomes
This handbook and the associated Director movies were produced
as an AGOCG-funded project with the following objectives:

• Establish the need to program in Lingo by showing
examples of generic problems in user interface
prototyping, control of media components, animation etc.
that cannot be solved through use of the score alone.

• Illustrate the algorithmic approach to tasks.
• Explain the basic principles and practice of programming

and provide examples of good programming style.

Introduction

Lingo Programming Learning Materials Page 2

• Provide pointers to resources for the further exploration of
computer programming in general and Lingo
programming in particular.

The outcomes of using the materials are expected to include:

• An appreciation of the role of programming in developing
multimedia software products.

• An understanding of how to approach the design of
computer programs.

• The ability to develop modest algorithms and programs.
• Some ability to diagnose and correct faulty programs.
• The ability to work with programming specialists when

entering employment, where teamwork will be the norm.

Approach and methods
The approach has been to provide a background text, movies in
various stages of development, and pointers to other resources
with the aim of encouraging the learner to take off in pursuit of his/
her own interests. Any one of the supplied movies could be taken
in a number of directions: when combined with the sample movies
and code fragments available from the other sources mentioned in
this handbook, there should be more than enough material for an
in–depth exploration of Lingo lasting several months.

The approach taken in this project differs from many
programming tutorials in three key respects:

1. By providing a lengthy algorithm development example.
2. By exploring the visualisation of code and data.
3. By including extensive comments in movie scripts.

It is assumed that users of the materials will pull the movies apart
and modify them, so they should serve both as learning vehicles
and as sources for solutions to generic problems. Some examples
of Lingo–based solutions to such problems are included in the
movies in the Example Movies folder.

The underlying assumption is that it will be necessary to
program for some time yet if we wish to utilise multimedia
authoring tools to the full. Products and languages may change, so
students now in the system should acquire something more
generally useful than skills in using one product. These materials
aim to ease the process of learning to program and, in so doing,
help to develop the transferable skill of understanding the
programming process irrespective of the language used.

Target audience
The materials are aimed primarily at the UK art and design
education community. However, they may also be suitable for use
in any introductory course in Lingo programming.

Introduction

Lingo Programming Learning Materials Page 3

How the project started
As a postgraduate course tutor between 1991 and 1997, I saw
plenty of novice programmers struggling with Lingo and with the
whole concept of programming. I tried various ways of making
their task easier and it was always obvious while doing this that
one of the major problems facing novices was the lack of good
tutorial material.

With a colleague at Coventry, I began producing Lingo
programming support material in 1993. We waited in vain for third-
party books or CD-ROMs to appear to supplement the rather
meagre Macromedia documentation. In the meantime, we used the
excellent Internet mailing list “direct-l ”. Postings suggested
publications on Lingo were imminent but nothing had appeared in
the UK by the spring of 1995. At the time, I worked on a fractional
contract for Coventry University and therefore approached AGOCG
as a freelance in June 1995 for funds to develop some Lingo
materials, based on the work already undertaken since 1993.

Ideally I would have spent more time researching the potential
audience before starting work on the materials but this would have
been a costly and time-consuming business. My idea was to get
something based on my experience and intuition out to users
within a very limited budget and then solicit feedback. In the event,
there was little response direct from users. Edition 2.0 is therefore
based once again on my instinct for which of the many new or
changed aspects of Lingo should be addressed in a limited time and
space. By the time this edition appears, Macromedia may have
released Director 6: further revision or extension of the materials
can be undertaken if it is warranted by the reaction to this version.

Summary of changes from Edition 1.0
Director 5 was a major upgrade, with many changes and new
features. Reviewing them all is outside the scope of this project,
which continues to focus on those items of particular interest to the
novice programmer. These are explored in more detail in How To
Use The Materials and Fixing Broken Programs. With this in mind,
here is a summary of the changes made in Edition 2.0:

• All movies from Edition 1.0 have been updated to the
Director 5 format using the built-in Xtra “Update Movies”

• A folder has been added (D5_MOVIES), containing more
than twenty new movies exploring new or significantly
changed aspects of Director relevant to learning to
program.

• A new method of formatting Lingo scripts has been
introduced with these new movies, using a colour-coding
convention and more extensive comments for improved
readability.

Introduction

The supply of third-

party Lingo materials

has improved since

publication of Edition

1.0 of Learning to

Program in Lingo (see

the Annotated Bib-

liography) but there is

still a need for the

approach taken here,

hence the publication

of Edition 2.0.

Edition 1.0 was

approved in July 1995

and work started in

September. The

materials were del-

ivered at the end of

March 1996. Edition

2.0 was proposed in

September1996, app-

roved in January 1997

and delivered in April.

Lingo Programming Learning Materials Page 4

Introduction

• A new section of the handbook has been created (Fixing
Broken Programs), exploring the single issue which
probably gives novices most difficulty.

• New references to printed and online material about Lingo
and programming have been added to the Annotated
Bibliography.

• Ten sample sound files from a commercial demonstration
sampler have been added to the "~RESOURCES" folder,
with purchase information in a ‘ReadMe’ file.

• Folders have been re-named and the folder hierarchy
modified: users of Edition 1.0 please note.

• A new run-time Projector (LingoProject_2.0) has been
created, fixing some minor problems with the original and
linking to a file-listing movie which can be modified for
use elsewhere.

These changes should be useful both to those familiar with Director
5 and those who have yet to change from Director 4. This Edition
also takes a brief look forward at likely features of interest in the
forthcoming release of Director 6.

Looking forward to Director 6
As of 21 April 1997, Macromedia’s website was listing the
following features of Director 6 which seem likely to be relevant to
the novice Lingo programmer:
Authoring and interface features
• New score
• 120 sprite channels
• Multiple Score windows
• Score generation at run time
• Unlimited castmembers
• Switch casts dynamically
Scripting-related features
• Drag and drop behaviors
• Construct interactivity using menus and dialog boxes
• Object-oriented behaviors
• Behavior Inspector
• Includes over 30 packaged behaviors
• Auto-puppeting
• Support for rollover in Lingo
Help and support features
• Interactive online tutorial movies
• Macromedia Information Exchange
• Connected ‘Help’ system
• 350,000 developers worldwide, resulting in extensive

support via training, user groups, conferences, online
forums

For more up-to-date information, visit:
http://www.macromedia.com/director/

Folder Organisation
Algorithm Development (AD_MOVIES)
Basic Scripting (BS_MOVIES) Director 5 Features (D5_MOVIES) Example Movies (EG_MOVIES) Program Visualisation (PV_MOVIES)

Lingo Programming Learning Materials Page 5

Limitations of the materials
The materials do not constitute an open learning package. They
have not been produced by a professional programmer and are not
intended as instruction in advanced programming. Neither do they
claim to be an authoritative guide to the Lingo language, which has
over 500 elements.

This is not a commercial product and there may well be errors,
omissions or undiscovered faults in the movies or the text.
Macromedia Inc. have not seen or approved the materials. The
movies have been used at various times in classes and workshops
at Coventry School of Art & Design but no warranty is implied. Use
them at your own risk!

All new movies and scripts were created on a PPC604 PowerMac
with Director version 5.0.1. Although most of the Lingo should
translate to the Windows environment, no attempt has been made
to create dual-platform materials in Edition 2.0. A Windows version
may follow at a later date.

Introduction

Lingo Programming Learning Materials Page 6

How To Use The Materials

How to use the materials

Assumed knowledge and equipment
It is assumed that users of these materials are familiar with the use
of Director’s cast and score to produce animation or interactivity
and with the creation or import of graphics, sound and digital video
to the cast. If you do not have this level of knowledge, stop reading
now and return to the materials when you have explored these
aspects of Director for a while.

Furthermore, you should know enough about setting up a
Macintosh to allocate application memory, install extensions and
control panels and sort out common operational problems.

Programming in Lingo involves a lot of typing and text editing,
so you should be comfortable with a keyboard and with Macintosh
text editing conventions and procedures.

In terms of equipment, you will need a 68040 Macintosh or
better with at least 12Mb of RAM free for Director. Note that more
application RAM is required when running Director on a
PowerMacintosh. A complete installation, including the online Help
system but excluding Macromedia’s tutorial movies, occupies
around 25Mb of disk space. You should not omit the Help files:
they are an invaluable source of Lingo definitions and example
fragments. The tutorial movies are of little use in my opinion and
they occupy a great deal more space than in Director 4: you can
safely omit them for day-to-day work. Director will require plenty of
memory and disk space if you are working with movies with lots of
sound or bitmap castmembers: consider 32Mb RAM and a 1Gb hard
disk the desirable minimum. The movies used in this project are
mostly less than 1Mb in size and many are less than 100Kb, so disk
space and memory requirements are not as great.

The maximum colour depth used in the project is 8-bit. You will
need at least one fourteen-inch display. Two monitors (one of
which could be monochrome), will be extremely useful because of
the extensive use Director makes of windows. Even seventeen-inch
monitors do not provide enough screen space on their own. Access
to a printer, preferably a PostScript printer, is highly desirable and
will be essential from time to time.

Lingo Programming Learning Materials Page 7

You need MacOs System 7 (preferably the latest release) and, of
course, a licensed copy of Director 5.0.1 or later. Director and the
on-line help system should be installed. You will not need any
additional fonts as system fonts have been used throughout the
project. A word processor or text editor will be useful for
formatting and printing scripts as Director’s own facilities in this
area are rather limited. Director 5 introduced Xtras as a
replacement for XObjects and included Xtras for printing and
database management. Explore use of these with the aid of the
Macromedia manuals.

Production note
Materials for Edition 1.0 were produced on a Macintosh IIvx running
System 7.1 with 20Mb of RAM and a 230Mb disk. Two fourteen
inch 8-bit displays were used. A Wacom Artpad was used for
drawing and painting. Printed output was from a Personal
LaserWriter 320 and the backup storage device was a d2 230Mb
magneto-optical drive.

Edition 2.0 materials production was carried out with Director
5.0.1 on a PowerMacintosh 7600/132 with 32Mb RAM and 1Gb
hard drive, running MacOs 7.5.3.

Organisation of the materials
The handbook provides background information and a guide to the
topics and movies. The movies are organised in five folders (names
in parenthesis), in the following categories:

Algorithm Development (AD_MOVIES)
Basic Scripting (BS_MOVIES)
Director 5 Features (D5_MOVIES)
Example Movies (EG_MOVIES)
Program Visualisation (PV_MOVIES)

which of course overlap to some extent. There is no implied order
in which to study the movies.

Sample sounds, pictures and digital video are provided in a
resources folder (~RESOURCES). The guiding design principle
behind the organisation has been to avoid the approach taken by
many programming texts: that is, defining the language elements
and syntax in detail before looking at problems and their solution.
The movies, especially those in Program Visualisation, incorporate
text handling, sprite control, use of variables and so on.
Commenting and layout of the code should help the learner
understand what is going on.

Accessing the movies
When accessing the movies for the first time, launch the Projector
LingoProject_2.0. This gives some introductory information. In
future, you can launch any of the movies in the topic folders. You
will find that some movies are linked together. Others may reside

How To Use The Materials

Lingo Programming Learning Materials Page 8

How To Use The Materials

in a sub-folder in order to make use of cast in a SHARED.DIR movie,
which was the Director 4 mechanism for sharing castmembers
between movies. A SHARED.DIR movie is no longer used and the
name will have been changed to SHARED.CST in the process of
updating. Movies in the D5_MOVIES folder may reside in a sub-
folder in order to make use of multiple casts (named
WHATEVER.CST), which is the Director 5 mechanism for sharing
castmembers.

You are expected to pull the movies apart and re-work them to
suit your own requirements: this is a good way to learn about
Lingo. If anything breaks it is probably NOT YOUR FAULT but you
should nevertheless work only on copies.

Lingo Programming Learning Materials Page 9

Getting Started With Lingo

Getting started with Lingo

Determine your objectives
The first thing to do is sort out your objectives. Do you intend to do
a lot of programming in the future or are you just trying to acquire
an appreciation of Lingo’s capabilities and limitations? In the
author’s experience, post-graduate students (for example) seem to
fall between these two extremes in needing to become sufficiently
competent to produce their degree project. After that, they may
need some programming skills in their first few jobs or they may
never program again. In either event, they are unlikely to become
professional programmers.

A frequent contributor to the direct -l mailing list, Simon Biggs,
responded to a request from one of my students for advice on
learning Lingo. He suggested allocating about three hours a day to
the task for nine months: the student did this and became a fairly
competent Lingo programmer. If you require less proficiency, then
allocate less time: taught workshops at Coventry occupy three
hours a week for four weeks, with a week for follow-up work
between workshops. This is sufficient for many students’ needs.

Assess your knowledge and experience
The second thing to do is assess your existing knowledge and
previous experience. Have you ever used any other programming
language? If not, have you at least used spreadsheet or database
software? Do you have a good grounding in mathematics (eg GCSE
pass or better)? What about languages? Do you understand the
roles of grammar, syntax and vocabulary in producing concise and
precise text? Lack of experience or ability in these areas will not
prevent you learning to use Lingo but any understanding you do
have will help a great deal.

Set up your working environment
Learning Lingo will be easier and more pleasant if you set up your
working environment properly. This means arranging the hardware
and configuring the software. Director uses a large number of

Lingo Programming Learning Materials Page 10

Getting Started With Lingo

windows and two monitors will make it much easier to arrange
these for maximum efficiency. An arrangement with two fourteen
inch monitors I have found effective is:

If you don’t have two monitors you will have to adapt this to your
own equipment.

Setup suggestions

1. Have a small stage (e.g. 9 inch monitor or 320x240 pixels)
on one monitor, leaving room for a tall thin Message
window which doesn’t obscure the stage.

2. Have Score, Cast and Script windows tiled on the second
monitor.

3. Set Movie Info and Preferences up as has been done in
the project movies.
It is generally best to “load cast when needed” as this
saves RAM and to specify “black and white user interface”
as using non-system or custom palettes can make the
coloured interface illegible.

4. Have the Lingo documentation to hand, that is Using Lingo
and the Lingo Dictionary.

Using the Message window
A good way to become acquainted with Lingo is to explore some
elements through the Message window. Lingo is an interpreted
language, which means that any valid Lingo statement will be
processed as soon as it is entered. Feedback can thus be almost
instantaneous. One-line Lingo statements can be entered in the
Message window and processed. Pressing the RETURN key signals
the end of the statement. Output from certain statements will be
sent back to the window.

Open the Message window and position it where you can see
the stage. Initially, you will be working without cast members or
sprites but as soon as you introduce these you need a clear view of
what is happening. This is where a small stage and/or multiple
monitors become useful.

Score

Cast

Script

Stage

Tools palette

Message

Monitor 1 Monitor 2

Note that the Message

window has been

substantially enhanced

since Director 4.

Lingo Programming Learning Materials Page 11

With the Message window active, check that the “Trace” option is
not selected. Without starting the movie, type:

put the date

Terminate the line with a RETURN. From now on, this step will be
assumed. The Message window should respond by displaying:

<todaysDate>

If you enter:
put the long date

the Message window should display:
<day month year>

This demonstrates that Lingo is working even when a movie is
stopped and that there are inbuilt Lingo elements which perform
useful tasks. Later, the role of the Message window in diagnosing
and correcting faults in programs will be explored.

Coping with the unknown
Enter the following in the Message window:

set myName = “Ian”

replacing Ian with your own first name. There will be no response
but this is a good sign! Next, enter:

put myName

and the window should display:
“Ian”

or whatever name you typed. This is an example of a programming
construct called a variable.

Variables are just containers for whatever we want to put in
them. In this case, we created a variable called <myName> and

Getting Started With Lingo

Director 4 Message window Director 5 Message window

The Message window

toolbar was introduced

in Director 5. See

Appendix One for

further details.

The "Trace" function is

now controlled by this

toolbar button.

Lingo Programming Learning Materials Page 12

used it to store the characters making up a first name. This could
be useful wherever we wanted to retrieve a name that we did not
know in advance, e.g. a name typed in by a user of our movie in
response to a prompt. Try entering:

set myNumber = 25

and again there should be no response. Now enter:
put myNumber

and the response should be:
25

Note the absence of inverted commas. This means the Lingo
interpreter is treating the digits 2 and 5 as the integer (whole)
number 25 and can perform arithmetic on it. Enter:

set myNumber = (myNumber * 4)

followed by:
put myNumber

The result should be:
100

The parentheses are not necessary here but help when handling
longer arithmetic expressions (see any maths primer on the rules of
precedence in evaluating expressions). Again, the variable would
be useful wherever we wanted to perform arithmetic on a number
that we did not know in advance.

Skilful use of variables can make programs much easier to
understand. You can find examples of variable usage in the project
movies and in movies from other sources. In general, variables are
used whenever we want to store results temporarily and process
them later without knowing the actual values in advance.

Learning more about Lingo elements
Lingo has over 500 elements, so trying them all in the Message
window would take a very long time! In fact, many elements cannot
be explored in this way because they do not in themselves form
complete statements or do not by themselves produce any output
in the window.

You can access elements through the Lingo menus in the
Message and Script window toolbars. Choosing an item from the
menu will place a skeleton Lingo statement at the text cursor
position in the active window.

Research has shown that examining the syntax and vocabulary
is not a good way of learning a programming language anyway
[PHILLIPS, 1996]. This project therefore concentrates on the tasks to
be performed and the techniques for developing solutions, rather
than the details of the Lingo language.

Using the Message window with cast and score
The Message window is not divorced from cast and score. Sprites
can be manipulated from the Message window and Lingo scripts
can cause sprites to feed output back to the window. In fact,

Getting Started With Lingo

You can also look up

element definitions in

the Lingo Dictionary or

the on-line help

system. Either method

will give you an

example or examples

of the element usage

but these may not be

complete in them-

selves. They may also

be confusing to a

novice and some are

actually wrong!

Lingo Programming Learning Materials Page 13

entering simple Lingo statements into the Message window is an
invaluable technique for testing out scripting ideas. Get used to
working with castmembers and sprites in this way before trying
more complex scripts.

Create a one-frame movie with this enterFrame script in the
Script channel of the score :

on enterFrame

go the frame

end enterFrame

This will cause the playhead to loop on the frame when the movie
is played. Next, create a simple QuickDraw or bitmap shape. Note
the registration point: for a QuickDraw shape it is top left and
cannot be reset; for a bitmap it is at the centre by default and can
be reset. If you are using a bitmap shape, transform the colour
depth to 1-bit. Place the castmember in channel 1 of the score. This
will position it centre stage.

Play the movie. Open the Message window and position it where
you can see the stage and the sprite. Enter:

put the foreColor of sprite 1

and the response should be:
255

that is, black. Now enter:
puppetSprite 1, TRUE

followed by:
set the foreColor of sprite 1 = N

where N is an integer number of your choice between 0 and 255.
The sprite should change colour. If things go wrong, check that you
are entering one complete line of Lingo at a time into the Message
window, terminated by a RETURN.

You can alter the sprite’s location in a similar way, using
commands such as:

put the locH of sprite 1

to find out what the current x-axis coordinate is, followed by:
set the locH of sprite 1 = N

where N is an integer number of your choice. This will set an
absolute position. Alternatively, you can specify a position relative
to the current position like this:

set the locH of sprite 1 = the locH of sprite 1 + N

You could of course set up a variable to store the current and new
locations: this would make each statement shorter.

The Director 5 Lingo property "loc of sprite" can be used instead
of "locH" and "locV", especially where you wish to change both
horizontal and vertical location at the same time. The property
value is given as a point in the form point(x,y). Try typing:

put the loc of sprite 1

and you should receive a response such as:
point(160,120)

Note that a sprite must be a puppet to be controlled in this way.

Getting Started With Lingo

Lingo Programming Learning Materials Page 14

An updateStage command is necessary if you want the stage
redrawn immediately, as you will if you are animating a sprite
within one frame.

Once Lingo statements have been tested in the Message
window, you can begin combining them into longer scripts. These
scripts can then be placed in the Script channel, attached to a frame
or frames, attached to a castmember or placed in the movie script,
according to the guidelines in Using Lingo.

Summary
You should now have a clear idea of your objectives and of how
much time you are willing and able to devote to learning Lingo.
Your eventual level of proficiency will depend far more upon these
factors than upon any innate ability you may have. You have been
introduced to variables and single-line Lingo statements and should
be able to make use of the Message window to develop and debug
your scripts.

Getting Started With Lingo

Lingo Programming Learning Materials Page 15

Algorithm Development

What is an algorithm?
Lingo is an example of a programming language for a computer
that works in sequential steps unless told to branch off or repeat
something. Tasks must be analysed with this in mind and the
process of doing this and developing solutions is called algorithmic
thinking. Developing algorithms, which can be done in human
language, should precede all but the most trivial coding in Lingo.

 The purpose of this section is to encourage you to develop your
algorithms thoroughly, since that will help ensure your programs
work properly. It is not to teach you how to code in Lingo but Lingo
conventions have been used for certain things where appropriate in
order to make the transition to code as straightforward as possible.

Where do I start?
The most common question is programming is “Where do I start?”.
The answer is:

1. State your assumptions.
2. Break your task down into smaller tasks.
3. Formulate step by step instructions to carry out each of

the smaller tasks.

What follows is an example of algorithm development that will not
actually be turned into Lingo, although some Lingo terms and
conventions will be used to make the relationship between
algorithm and code as obvious as possible. The example is
modified from one given in [PATTERSON et al, 1989], a useful book
for novice programmers. When you have studied the example, take
something you are working on in Director and apply the same
approach. Be careful to avoid coding in Lingo until you are satisfied
with your algorithms.

Algorithm Development

Lingo Programming Learning Materials Page 16

Task
Give instructions for making and serving coffee while reading the
paper before breakfast.
Assumptions
Instructions are for a machine that has the physical abilities of a
human but is as literal-minded as a computer. So, it can pick up a
coffee pot but will have to be told exactly what to do and when to
do it.
Decomposition
There are two main parts: preparing the coffee and reading the
paper. Initial algorithm:

Prepare coffee

Read paper

We now proceed in a manner sometimes called “stepwise
refinement”, stating any fresh assumptions as we go along. We will
refine the algorithm by considering the two parts separately. New
material will be in bold type like this:

newMaterial

while existing material will remain in plain type.

Stepwise refinement of the algorithm
Our initial two–step algorithm can first be broken into three steps.

Make coffee

Serve coffee

Read paper

What is involved in making the coffee?
Assume a filter coffee maker and fresh beans.

Put new filter in coffee maker

Grind beans

Put grounds in filter

Boil water

Pour boiling water over grounds

Let drip

Serve coffee

Read paper

If you go on like this, the algorithm description soon becomes a
long and confusing list of instructions. Like most modern
programming languages, Lingo lets you define your own
procedures and call them up by name when you need them. This
allows you to hide detail, which has been shown to be one of the
best ways of improving program quality and increasing
programmer productivity.

See the Basic Scripting section and the project movies for more
information and ideas about how to organise and structure your
Lingo code. In following this example, all you need to know is that
the Lingo term for a procedure is “handler” and that you should

Algorithm Development

Lingo Programming Learning Materials Page 17

avoid using any of the Lingo keywords (or “reserved words”) as
names for your handlers: check for conflicts by looking through the
Lingo menu.

If we assume a procedure called MakeCoffee has been defined
elsewhere, our main algorithm could be refined to:

MakeCoffee

Serve coffee

Read paper

Note the difference between the word we have invented in line one
and lines two and three: the latter are close to plain English while
line one is a step closer to Lingo code.

Handlers begin and end with the keywords “on” and “end”, so
the handler to make coffee as defined above could look like this:

on MakeCoffee

Put new filter in coffee maker

Grind beans

Put grounds in filter

Boil water

Pour boiling water over grounds

Let drip

end MakeCoffee

The only thing we have changed is to bracket the steps for making
coffee with handler definition lines. The indentation helps us read
the procedure as these lines, beginning with “on” and “end”, now
stand out. The computer will automatically substitute the full
procedure for the term MakeCoffee when the program executes.
Apart from hiding detail, writing our algorithm out in this form
means it is easy to give instructions to make more coffee. We just
add one line:

MakeCoffee

Serve coffee

Read paper

MakeCoffee

If you are following this closely, you might realise that the
MakeCoffee procedure as it stands is not really suitable for use
more than once: it does not contain any instructions about
removing the used filter! You can rewrite that procedure to take
account of this if you wish.

Giving instructions to a “virtual machine” in this form is fine but
it is not necessarily easy for humans to understand those
instructions or the logic behind them. To improve readability, we
add comments: lines in our algorithm that will be ignored by the
machine but help make the algorithm intelligible to humans. A lot
of programming effort goes into fixing or maintaining existing
programs, so anything which will help us understand our
programs is a good idea.

Algorithm Development

Lingo Programming Learning Materials Page 18

All programming languages have “comment conventions”: ways
of distinguishing instructions to the machine from text meant for
humans. In Lingo, comments are distinguished by two hyphens in
front of the text:
--This is a comment in Lingo.

--Lines beginning "--" will be ignored by the machine.

Blank lines are also ignored by the machine, so we don’t need any
comments for those. We can lay out our algorithms fairly clearly
using nothing more than basic visual design sense, comments and
white space. The coffee algorithm can now be further refined:

Algorithm Development

--Algorithm for making coffee and reading paper.

--Assumptions:

--Machine has mind as literal as a computer but

--human physical abilities.

--This new version uses three procedures:

--MakeCoffee, ServeCoffee, ReadPaper

--

--Main program starts

MakeCoffee

ServeCoffee

ReadPaper

--Main program ends---

--handler definitions start---

--handler to make filter coffee from fresh beans

on MakeCoffee

Put new filter in coffee maker

Grind beans

Put grounds in filter

Boil water

Pour boiling water over grounds

Let drip

end MakeCoffee

--handler to serve coffee (for one person)

on ServeCoffee

--we still have to write this procedure

end ServeCoffee

--handler to read paper

on ReadPaper

--we still have to write this procedure

end ReadPaper

--handler definitions end---

--TrailerNotes

--We now have a clear idea of what still remains to be

--done, just by looking at the algorithm.

--Last revised 5 Feb 96

So much of the revised

algorithm is new that it

has all been set in

plain type. From now

on, we will revert to

using bold for new

material. Note also that

we have taken care to

get our revised

algorithm description

on one page.

In general, if a

description won’t fit on

one page, it is time to

break it down further.

For instance, handler

definitions could go on

a separate page. The

same advice applies to

diagrams of algorithms

(“flowcharts”) which

will be introduced later

and explored further in

Program Visualisation.

Lingo Programming Learning Materials Page 19

Note on the project movies
The project movies use various layouts for Lingo code. Look at the
movie scripts and "script store" text fields for examples. Develop
your own standard format to help you distinguish between the
various parts of your code. This approach reduces the likelihood of
making programming errors and makes it easier to find those
errors that do occur.

Variables
So far, we have only organised the instructions in our developing
program. We usually want to organise information as well. For
instance, what can we do about specifying how much mik and
sugar to serve with the coffee?

We will use the construct called a “variable” that was introduced
in Getting Started With Lingo. Remember, a variable is simply a
container that can hold whatever we specify. Variables should be
given meaningful names (you may encounter programs that use
cryptic names like “N” or “x” but this is not usually a good idea), so
we will use NumberOfSpoons and TakesMilk for our variable
names. These names give some clue to their purpose and likely
contents. We can now write the procedure ServeCoffee:

--handler to serve coffee (for one person)

--ServeCoffee uses two variables:

--NumberOfSpoons for number of teaspoons

--of sugar per cup

--TakesMilk to indicate whether milk should

--be added to cup

on ServeCoffee

Pour coffee from pot into cup

Add NumberOfSpoons spoons of sugar to cup

IF TakesMilk = yes THEN

Add milk to cup

END IF

Stir

end ServeCoffee

This introduces a further construct, the conditional action, indicated
by the words “IF ... THEN... END IF”. The general form of this is:

IF <condition> THEN

Action(s)

END IF

If the condition is not met, the action(s) are not performed and we
move on to the next instruction in the sequence. This is what is
sometimes known as a “branch”. Branching, and another construct
called "repetition", are explained in more detail later in this section.

Algorithm Development

The keywords IF,

THEN, ELSE and END IF

are in upper-case in

the example code

purely for clarity when

reading the example:

we would normally use

lower-case in working

programs.

Lingo Programming Learning Materials Page 20

The variables will have to be given (“assigned”) values before
they can be used. This will be done in the main program, which will
therefore look like this:

--Main program starts

MakeCoffee

set NumberOfSpoons = 2 --two sugars please

set TakesMilk = yes --and milk

ServeCoffee

ReadPaper

--Main program ends

This is fine, except that Lingo would not know about these
variables in the main program: they were introduced in the handler
ServeCoffee. Variables which will be used only within a handler are
called “local”; variables which can be used by other handlers (or
movies) are called “global”.

Local variables can be used “on the fly” but globals have to be
declared as such and given a value before being used. Frequently,
variables will be “initialised” when first declared; that is, given
sensible initial values. In Lingo, this is often done whenever the
movie is played but it can be done wherever is most appropriate for
the task in hand. The algorithm re-written to use global variables
NumberOfSpoons and TakesMilk is described on the next page.

Algorithm Development

Lingo Programming Learning Materials Page 21

--Algorithm for making coffee and reading paper.

--Assumptions:

--Machine has mind as literal as a computer but human physical abilities.

--This new version uses three procedures:

--MakeCoffee, ServeCoffee, ReadPaper

--Main program starts

global NumberOfSpoons, TakesMilk

MakeCoffee

set NumberOfSpoons = 2 --two sugars please

set TakesMilk = yes --and milk

ServeCoffee

ReadPaper

--Main program ends---------------------------------

--handler definitions start---

--handler to make filter coffee from fresh beans

on MakeCoffee

Put new filter in coffee maker

Grind beans

Put grounds in filter

Boil water

Pour boiling water over grounds

Let drip

end MakeCoffee

--handler to serve coffee (for one person)

--ServeCoffee uses two variables:

--NumberOfSpoons for number of teaspoons of sugar per cup

--TakesMilk to indicate whether milk should be added to cup

on ServeCoffee

global NumberOfSpoons, TakesMilk

Pour coffee from pot into cup

Add NumberOfSpoons spoons of sugar to cup --value set in main program

IF TakesMilk = yes THEN --value set in main program

Add milk to cup

END IF

Stir

end ServeCoffee

--handler to read paper

on ReadPaper

--we still have to write this procedure

end ReadPaper

--handler definitions end-----------------------------

--TrailerNotes---

--We now have a clear idea of what still remains to be done,

--just by looking at the algorithm.

--Last revised 5 Feb 96

Algorithm Development

Lingo Programming Learning Materials Page 22

Suppose we wish to serve coffee to more than one person. We can
now make further use of the variables by giving them different
values for the second serving. The algorithm for the main program
now becomes:

--Main program starts---

global NumberOfSpoons, TakesMilk

MakeCoffee

set NumberOfSpoons = 2 --two sugars please

set TakesMilk = yes --and milk

ServeCoffee

set NumberOfSpoons = 1 --only one sugar please

set TakesMilk = no --no milk

ServeCoffee

ReadPaper

--Main program ends----------------------------------

We could refine this further by introducing a variable called
RecommendedAmount which could be set once for the whole
program:

global RecommendedAmount

set RecommendedAmount = 1

We could then assign new values to NumberOfSpoons in this way:

--Main program starts---

global NumberOfSpoons, TakesMilk

MakeCoffee

set NumberOfSpoons = RecommendedAmount + 1

--one more sugar won’t hurt

set TakesMilk = yes --and milk

ServeCoffee

--second serving

set NumberOfSpoons = RecommendedAmount

--very wise

set TakesMilk = no --no milk

ServeCoffee

ReadPaper

--Main program ends-------------------------------

Note that we assign new values to variables using notation like this:
set NumberOfSpoons = NumberOfSpoons + 1

or this:
set NumberOfSpoons = NumberOfSpoons - 1

which means “increase (or decrease) NumberOfSpoons by one”.
Once we start using variables and procedures more than once,

we run the risk of having to keep track of lots of values as the main
program grows longer. It would be simpler if our procedures could
be supplied with values as they were called. For example, we could

Algorithm Development

Lingo Programming Learning Materials Page 23

then call ServeCoffee like this:
ServeCoffee(2, yes)

meaning two spoons of sugar with milk. This is a lot more concise
and readable than:

set NumberOfSpoons = 2 --two sugars please

set TakesMilk = yes --and milk

ServeCoffee

provided we have rewritten ServeCoffee to know that it will receive
the information in this form. In Lingo, variables passed to a handler
are called “parameter variables” or “arguments”. Handlers which
accept parameter variables or arguments can be used to do the job
of several ordinary handlers.

The parameter variables look like ordinary variables but only
exist within the procedure that uses them. The main program looks
like this:

--Main program starts---

MakeCoffee

ServeCoffee(2, yes)

ReadPaper

--Main program ends---------

and ServeCoffee now looks like this:

--handler to serve coffee (for one person)

--ServeCoffee now uses NumberOfSpoons and TakesMilk

--as “parameter variables” or “arguments” to indicate

--amount of sugar and whether milk should

--be added to cup.

on ServeCoffee

Pour coffee from pot into cup

Add NumberOfSpoons spoons of sugar to cup

--value set in main program

IF TakesMilk = yes THEN

--value set in main program

Add milk to cup

END IF

Stir

end ServeCoffee

This of course means values are passed from the main program to
the ServeCoffee handler. The work of maintaining the variables is
now localised in the procedure they relate to, rather than in the
main program as illustrated on the previous page. At the same
time, the main program becomes more readable.

Algorithm Development

Lingo Programming Learning Materials Page 24

Multiple servings, which would have made for a complicated
series of variable assignments, can now be accommodated like this:

--Main program starts---

MakeCoffee

ServeCoffee(2, yes)

ServeCoffee(1, no)

ServeCoffee(0, yes)

--and so on…

ReadPaper

--Main program ends---------

Over the page is the Lingo from a working example (see the movie
algoDevCoffee_V1.0 in the Algorithm Development folder) that
simulates the execution of the ServeCoffee procedure by putting
text messages into a field.
Note 1
The TakesMilk argument uses the values 1 for Yes and 0 for No in
the working version.
Note 2
There is no Main Program in the working example. The ServeCoffee
handler is called by clicking a button on the stage: different buttons
specify different values for sugar and milk. The principle of passing
values from the calling code to a procedure is the same.
Note 3
Note 2 illustrates one problem with the Lingo/Director
environment: bits of the task are carried out by sprites on the stage
or the movement of the playhead and bits by Lingo code. This is
quite different from “traditional” languages. It means there is great
flexibility in this environment but also great potential for confusion.

Controlling execution flow
The normal flow of execution is step by step from start to finish of
a program. This is known as a sequence. We have already
encountered the concept of changing this flow by branching to
another set of instructions and then rejoining the main flow. This is
known as selection. A further alteration in the flow occurs when we
want to perform some action or actions several times before
proceeding: this is known as repetition. Thus we have three
constructs for controlling execution flow:

Sequence
Selection
Repetition

These constructs are explored in more detail in the Program
Visualisation section and movies.

Algorithm Development

Lingo Programming Learning Materials Page 25

--MOVIE to demonstrate use of arguments/parameters in handlers

--as part of algorithm development topic.

--HeaderNotes

--

--Simulates coffee serving procedure by putting messages in text fields.

--Scripts attached to buttons call the handler and pass values

--for NumberofSpoons and TakesMilk.

--handler definition--

--The ServeCoffee “procedure” written as a handler

--that takes two arguments (or parameters), NumberOfSpoons and TakesMilk.

on ServeCoffee NumberOfSpoons, TakesMilk

 set the text of field “outputFLD” to EMPTY

 --just clearing the field so we know the program executes

 put “Pour coffee from pot into cup” &RETURN into field “outputFLD”

 --sugar?

 IF NumberOfSpoons = 1 THEN

 put “Just enough sugar” &RETURN after field “outputFLD”

 ELSE IF NumberOfSpoons > 1 THEN

 put “Too much sugar” &RETURN after field “outputFLD”

 ELSE IF NumberOfSpoons = 0 THEN

 put “Wise to avoid sugar” &RETURN after field “outputFLD”

 END IF

 --milk?

 IF TakesMilk = 0 THEN

 put “No milk” &RETURN after field “outputFLD”

 ELSE if TakesMilk = 1 then

 put “Add milk” &RETURN after field “outputFLD”

 END IF

 put “Stir” &RETURN after field “outputFLD”

end ServeCoffee

--handler definition ends---

--TrailerNotes---

--

--See the sections on text handling in the Lingo documentation and this

--project for more information on the construction of the text messages.

--Last modified 21 Feb 96.

Algorithm Development

Lingo Programming Learning Materials Page 26

Summary
This is as far as we will go with stepwise refinement of the coffee-
making algorithm. The section has introduced the following
important concepts:

• Algorithms
stating assumptions
decomposition
stepwise refinement
representing algorithms by diagrams
execution flow
comments

• Procedures
handlers (defining a procedure)
parameters and arguments

• Variables
declaring a variable
initialising a variable
assigning a value to a variable

and they are the basis of successful programming. The more you
use them, the easier you will find them to understand.

You can get more information from the Annotated Bibliography.
Books I have found particularly useful are [CHANTLER, 1981; MEEK
et al, 1983; PATTERSON et al, 1989]. See the Basic Scripting and
Program Visualisation movies for examples of structuring and
organising actual Lingo code.

Algorithm Development

Lingo Programming Learning Materials Page 27

Basic Scripting

Basic Scripting

First things first
Lingo statements look something like English but the rules
governing their construction and use are stricter. As with any
programming language, you need to become familiar with certain
concepts and bits of jargon. The most important concepts are:

1. The idea of issuing instructions in the form of statements
in a special language called Lingo.

2. The use of Lingo elements such as keywords, operators
and functions, together with variables and text strings, to
construct statements.

3. The packaging of a number of statements into a script.

Thus, elements can be combined into statements and statements
can be combined to form scripts. Complicated scripts can be
repackaged into one or more handlers that can be called with one
word statements. Try to get these distinctions clear for the sake of
swift and unambiguous communication with all concerned.

Learning the jargon
Some terms have special meanings in the context of programming.
Familiarity with these will be essential later on. It would be helpful
to read Chapter 3 of Using Lingo, entitled “Concepts” before
proceeding much further and particularly helpful to read “The
Elements of Lingo” on pp 119-120 first. Lingo elements are
classified there as:

commands instructions that cause something to happen while
a movie is playing

functions elements that return some value
keywords reserved words with a special meaning, e.g. ‘the’,

which indicates that the word following is a
property

properties attributes of an object, such as locH or locV
(horizontal and vertical location of an object in
screen pixels)

Lingo Programming Learning Materials Page 28

Basic Scripting

operators symbols or words that change the value of other
things, e.g. the ‘+’ operator adds two values
together to produce a new value

constants elements that don’t change, e.g. FALSE and EMPTY,
which always have the same meaning

What’s in this section?
Many programming texts start by examining the syntax and
vocabulary of a language in detail. This is not all that helpful to a
novice programmer and this project does not take that approach.
Rather, it provides example movies that you can study, take apart
and modify so that you learn by doing. In this section, there are
movies on:

• changing frames with scripts
• controlling sprites with scripts
• linking movies with scripts that

a. pass control to another movie
b. play all or part of another movie and return

• various other simple button or frame-triggered actions
• getting and responding to user input

e.g. get a name typed in and respond
• the execution flow in a script

a. sequence
b. selection (or “branching”)
c. repetition (or “iteration”)

These movies also demonstrate ways of organising your
castmembers (the program “data”) and scripts (the program “source
code”) that make it easier to understand what your scripts do when
they work and what is wrong with them when they don’t.

Useful things to know
Lingo works by passing events and messages through a hierarchy
until they encounter handlers that can deal with them. To quote
Using Lingo:

When events – such as clicking the mouse or exiting a frame –
occur, Director sends a message describing the events to a
series of objects… When an object has a script that is set to
respond to the particular message, the instructions in the
script are carried out.

Study the Lingo documentation carefully until you understand
the messaging process (see Using Lingo, p80 ff, “How Director
responds to messages”). This manual is not very clear on what
happens when a frame is drawn. See the Lingo Workshop
[THOMPSON & GOTTLIEB, 1995] for a good explanation of “the life
of a frame” and for extra information on the messaging hierarchy.

If you are familiar with

the WorldWideWeb,

compare the links

between frames and

movies in Director

with the links in Web

documents and the

HTML implementation

of links.

Lingo Programming Learning Materials Page 29

Basic Scripting

You also need to know that it is either the score or Lingo which
is in control of your movie at any moment. Weird things happen if
you forget this: for instance, if puppet sprites are subjected to
score transitions. Make sure you know which mechanism has
control and take the appropriate action. This will involve actions
such as applying and removing puppet status when combining
scripted animation with score transitions and can lead to a lot of
“housekeeping” work. Neglect it at your own risk!

Finally, consult the booklet of tips for developers which comes
with Director for advice on ensuring the best performance of your
movies. The Lingo Workshop is also very good on this topic.

Controlling execution flow in scripts
The concept of step by step execution of statements was
introduced in Algorithm Development, together with the associated
concepts of branching to other statements and repeating certain
statements. When first creating Lingo scripts, it is best to start with
the step by step approach. This is known as a sequence and can be
represented diagrammatically like this:

Quite a lot can be accomplished in this manner (see the movie
sequentialScript1 for an example) but long sequences become
unwieldy. Furthermore, the sequence cannot cope with conditions
that may arise. For example, you might want different actions to
follow from a user’s choice of icons on a screen.

To cope with this, we use a construct called selection (also
known as branching or conditional execution). Selection comes in
two forms: a simple branch in which actions are performed only IF
a condition is met, and a two-way branch, in which alternative
actions are performed whether or not the condition is met. The two
forms are shown diagrammatically on the next page.

SEQUENCE

process A

process B

set the foreColor of sprite 1 = 100

Set the locH of sprite 1 = 200

…more statements…

Lingo Programming Learning Materials Page 30

Basic Scripting

Note that the indenting of the code, which is performed
automatically in Director script windows, helps readability. It also
performs a check on your code: if the END IF statement is missing,
the code is incorrect and will not indent.

Note that the “process” boxes could actually contain a series of
statements: we are showing one for the sake of clarity. The digram
for the repeat construct, which is the final building block we need
for complex scripts, illustrates this by referring to “process(es)”.

IF THEN…

TRUE

FALSE

testCondition

process A

IF the clickOn = 10 THEN

set the foreColor of sprite 10 = 255

END IF

IF THEN… ELSE…

TRUE FALSE

process A process B

testCondition

IF the clickOn = 10 THEN

set the foreColor of sprite 10 = 255

ELSE

alert "Please click an icon"

END IF

set foreColor of sprite display alert

Lingo Programming Learning Materials Page 31

It has been shown mathematically that these three constructs can
be combined to create code structures that will solve any problem
which can be solved algorithmically. The process of combining is
known as nesting.

Developing programs in the ways advocated (in Algorithm
Development and this section) became known as “structured
programming”. The approach was devised to tackle the enormous
problems caused by highly individualistic programming and should
help you develop sound solutions in Lingo.

A step on from this is the method known as “object oriented
programming”(OOP). This offers advantages over simple structured
programming for many of the projects tackled with Director and
Lingo. Interest in the approach began to develop rapidly from the
late 1980s and Lingo supports many features of OOP, though the
documentation is rather patchy. The Annotated Bibliography
contains some suggestions for further reading for those interested.

Other sources of information
As stated in the Introduction, the project came about because Lingo
tutorial material was in such short supply. There are now some
useful sources of information and advice about Lingo and more are
appearing all the time. Those available at the time of writing are
listed in the Annotated Bibliography.

Basic Scripting

REPEAT WHILE…

TRUE

FALSE

process(es)

testConditionset myNumber = 10

REPEAT WHILE myNumber <= 100

set the stageColor = myNumber

set the locH of sprite 1 = myNumber

set myNumber = myNumber + 10

END REPEAT

Lingo Programming Learning Materials Page 32

Program Visualisation

What is program visualisation?
This term is used to cover methods of representing program data,
source code, or execution that help us visualise what is going on.
Academic research such as that cited in Computer Program
Visualisation in Art and Design Computing [PHILLIPS, 1996] has
suggested that these methods, which usually have a strong visual
component, can help novices learn to program.

What methods are used in these materials?
The established methods of program visualisation can be
summarised as:

• Commenting
Adding lines (which will not be executed) to program
source code to clarify structure and function.

• Pretty printing
Formatting program source code (automatically if
possible) to clarify structure and function.

• Flowcharting
Using static diagrams to clarify algorithms and program
execution flow.

• Code highlighting
Drawing attention to lines of source code as the program
executes to clarify execution flow.

• Watching
Using text fields to store the changing values of variables
or program states. This method can be used for many
purposes, including troubleshooting.

• Animating
Using moving elements (and sound) to clarify the structure
or purpose of a program.

All of these methods have been used in one form or another in this
project. Some methods have been used extensively, others merely
in an experimental manner. Work on program visualisation
continues at Coventry School of Art and Design.

Program Visualisation

Lingo Programming Learning Materials Page 33

Strengths and weaknesses of visualisation methods
Some methods can be employed without any special equipment,
software or technical skill. Others require a great deal of
programming support to be properly implemented.

Commenting
Commenting can and should be undertaken by anyone writing
Lingo programs. Comments have to be inserted manually. There is
no guarantee that comments will be meaningful - comments
frequently describe what the author thinks the code does, rather
than what it actually does. Extensive use is made of comments in
the project movies.

Pretty printing
Can be undertaken by anyone writing Lingo programs. Research
has concentrated on automatic formatting based on analysis of
source code but novice Lingo programmers have to format
manually. The method can be used to format code and comments
in script windows or to format for print but there is considerable
effort involved, even in examples as short as those on pages 31-35.

On-screen we can make use of colour and a rather limited range
of typographic effects: italic type rarely displays well, for example.
In print, we can insert diagrams and use a wide range of
typographic effects but will usually rely on monochrome or grey-
scale printers for output. An example of each approach is included
in the Program Visualisation movies.

Flowcharting
Producing flowchart components is not difficult for anyone with a
visual education: employing them to sort out program logic is less
easy and dealing with complex selection or repetition can be
difficult. Flowcharts are nevertheless a valuable aid to program
development and are akin to animation storyboards in many
respects. Simple diagrams have been used to illustrate the basic
execution flow constructs in some Program Visualisation movies.

Code highlighting
Stepping a highlighter bar through on-screen source code is a
simple way of illustrating execution flow in a Lingo script. The chief
difficulty lies in making sure the right lines are highlighted: there is
no mechanism in Lingo for automatically picking the line currently
being executed. The technique is used in some Program
Visualisation movies.

Watching
Some programming environments include “watcher” windows.
Lingo is supplied only with the Message window, though sources
such as the Gray Matter MediaBook CD offer several additional

Program Visualisation

Lingo Programming Learning Materials Page 34

Program Visualisation

Example of pretty printing
Here is a Lingo script defining a handler, printed without comments or formatting. The
only clue to the structure of the code lies in the indentation.

on replaceNumberAnim1

 global initH, incrementH, newH, theHotLine, myNum

 puppetSprite 12, TRUE

 set initH = the locH of sprite 12

 set incrementH = 48

 set newH = initH + incrementH

 set theHotLine = 2

 hilite line theHotLine of field “codeFragmentFLD”

 set theHotLine = theHotLine + 2

 hilite line theHotLine of field “codeFragmentFLD”

 set myNum = 2

 put myNum into word 6 of field “varWatchFLD”

 repeat while myNum <= 6

 set theHotLine = 5

 hilite line theHotLine of field “codeFragmentFLD”

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 set the locH of sprite 12 = newH

 set newH = (newH + incrementH)

 updateStage

 set the castNum of sprite 8 = myNum

 updateStage

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 set myNum = myNum + 1

 put myNum into word 6 of field “varWatchFLD”

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 end repeat

set theHotLine = 5

hilite line theHotLine of field “codeFragmentFLD”

beep 2

hilite line 1 of field “varWatchFLD”

beep 2

set the text of field “testConWatchFLD” = “Loop condition failed - end

repeat”

hilite line 1 of field “testConWatchFLD”

set theHotLine = 8

hilite line theHotLine of field “codeFragmentFLD”

set theHotLine = theHotLine + 1

hilite line theHotLine of field “codeFragmentFLD”

end replaceNumberAnim1

Comments are added on the next page to increase the readability of the source code.

Lingo Programming Learning Materials Page 35

Program Visualisation

--Animating a loop with display of:

--changing loop testCondition variable value,

--changing Cast selection as loop executes,

--and hilited code line in handler fragment.

on replaceNumberAnim1

 global initH, incrementH, newH, theHotLine, myNum

 puppetSprite 12, TRUE —the cast hiliter

 set initH = the locH of sprite 12 --over the bitmap question mark

 set incrementH = 48 --no. of pixels between centres of cast

thumbnails

 set newH = initH + incrementH --should put us over bitmap number “1”

 set theHotLine = 2

 hilite line theHotLine of field “codeFragmentFLD”

 set theHotLine = theHotLine + 2

 hilite line theHotLine of field “codeFragmentFLD”

 set myNum = 2

 put myNum into word 6 of field “varWatchFLD”

 repeat while myNum <= 6

 set theHotLine = 5

 hilite line theHotLine of field “codeFragmentFLD”

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 set the locH of sprite 12 = newH

 set newH = (newH + incrementH)

 updateStage

 set the castNum of sprite 8 = myNum

 updateStage

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 set myNum = myNum + 1

 put myNum into word 6 of field “varWatchFLD”

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 end repeat

 set theHotLine = 5

 hilite line theHotLine of field “codeFragmentFLD”

 beep 2

 hilite line 1 of field “varWatchFLD”

 beep 2

 set the text of field “testConWatchFLD” = “Loop condition failed -

end repeat”

 hilite line 1 of field “testConWatchFLD”

 set theHotLine = 8

 hilite line theHotLine of field “codeFragmentFLD”

 set theHotLine = theHotLine + 1

 hilite line theHotLine of field “codeFragmentFLD”

 end replaceNumberAnim1

Lingo Programming Learning Materials Page 36

Program Visualisation

--handler definitions---
--Animating a loop with display of changing loop testCondition variable value,
--changing Cast selection as loop executes, and hilited code line in handler fragment.

on replaceNumberAnim1
 --preparation
 global initH, incrementH, newH, theHotLine, myNum
 --actually, not used outside this handler at present but…
 puppetSprite 12, TRUE --the cast hiliter
 --record castmember telltale initial position
 --(and set up other variables for later)
 set initH = the locH of sprite 12 --over the bitmap question mark
 set incrementH = 48 --number of pixels between centres of cast thumbnails
 set newH = initH + incrementH --should put us over bitmap number “1” (castNum 2)
 --hilite entering the handler
 set theHotLine = 2
 hilite line theHotLine of field “codeFragmentFLD”
 --hilite initial setting of test variable
 set theHotLine = theHotLine + 2
 hilite line theHotLine of field “codeFragmentFLD”
 set myNum = 2
 put myNum into word 6 of field “varWatchFLD”
 repeat while myNum <= 6
 --hilite start of loop
 set theHotLine = 5
 hilite line theHotLine of field “codeFragmentFLD”
 --hilite setting of castNum to variable
 set theHotLine = theHotLine + 1
 hilite line theHotLine of field “codeFragmentFLD”
 --hilite first cast member in sequence
 set the locH of sprite 12 = newH
 set newH = (newH + incrementH)
 updateStage
 --do Nth frame of the animation
 set the castNum of sprite 8 = myNum
 updateStage
 --hilite incrementing of test variable
 set theHotLine = theHotLine + 1
 hilite line theHotLine of field “codeFragmentFLD”
 set myNum = myNum + 1
 put myNum into word 6 of field “varWatchFLD”
 --hilite end of loop
 set theHotLine = theHotLine + 1
 hilite line theHotLine of field “codeFragmentFLD”
 end repeat
 --when the test is failed…
 --hilite start of loop (test is failed this time)
 set theHotLine = 5
 hilite line theHotLine of field “codeFragmentFLD”
 --show a “test failed/loop terminates” message
 beep 2
 hilite line 1 of field “varWatchFLD”
 beep 2
 set the text of field “testConWatchFLD” = “Loop condition failed - end repeat”
 hilite line 1 of field “testConWatchFLD”
 --hilite end of loop
 set theHotLine = 8
 hilite line theHotLine of field “codeFragmentFLD”
 --hilite end of handler
 set theHotLine = theHotLine + 1
 hilite line theHotLine of field “codeFragmentFLD”
end replaceNumberAnim1
--NB Core of this handler is still the simple “repeat while…” loop.

Reducing the size of the type and

using a proportional font allows us to

include more comments but the code

is still very crowded on the page.

It is also hard to tell comments from

statements. Clearly, use of bold and

italic type and more white space

could make things better.

The example on the next page takes

the repeat loop and explores these

possibilities.

The final example looks at how the

complete movie script from which

this handler came might be tackled.

Lingo Programming Learning Materials Page 37

Use of bold and italic type and more

white space has certainly improved

the readability of the code.

The comments above the loop

indicate that we could define thise

operations as separate handlers and

call them with one word from here.

Comments above and below the

handler help establish its purpose and

derivation: we can make notes to

ourselves and others as we go along.

Compare this approach with that

taken in Algorithm Development.

--handler definitions---
--Animating a loop with display of changing loop testCondition variable value,
--changing Cast selection as loop executes, and hilited code line in handler fragment.

on replaceNumberAnim1

--preparation
global initH, incrementH, newH, theHotLine, myNum
--record castmember telltale initial position
--(and set up other variables for later)

--hilite entering the handler

--hilite initial setting of test variable
set myNum = 2
put myNum into word 6 of field “varWatchFLD”
repeat while myNum <= 6

--hilite start of loop
set theHotLine = 5
hilite line theHotLine of field “codeFragmentFLD”
--hilite setting of castNum to variable
set theHotLine = theHotLine + 1
hilite line theHotLine of field “codeFragmentFLD”
--hilite first cast member in sequence
set the locH of sprite 12 = newH
set newH = (newH + incrementH)
updateStage
--do Nth frame of the animation
set the castNum of sprite 8 = myNum
updateStage
--hilite incrementing of test variable
set theHotLine = theHotLine + 1
hilite line theHotLine of field “codeFragmentFLD”
set myNum = myNum + 1
put myNum into word 6 of field “varWatchFLD”
--hilite end of loop
set theHotLine = theHotLine + 1
hilite line theHotLine of field “codeFragmentFLD”

end repeat

 --when the test is failed…
 --hilite start of loop (test is failed this time)
 set theHotLine = 5
 hilite line theHotLine of field “codeFragmentFLD”
 --show a “test failed/loop terminates” message
 beep 2
 hilite line 1 of field “varWatchFLD”
 beep 2
 set the text of field “testConWatchFLD” = “Loop condition failed - end repeat”
 hilite line 1 of field “testConWatchFLD”
 --hilite end of loop
 set theHotLine = 8
 hilite line theHotLine of field “codeFragmentFLD”
 --hilite end of handler
 set theHotLine = theHotLine + 1
 hilite line theHotLine of field “codeFragmentFLD”

end replaceNumberAnim1

--NB Core of this handler is still the simple “repeat while…” loop.
--See the movies in Program Visualisation folder for original code.
--Note that new tab stops have been set to give deeper indentation in the code.

Program Visualisation

Lingo Programming Learning Materials Page 38

Program Visualisation

MOVIE to explain a REPEAT WHILE… loop (animated explanation)

HeaderNotes
This one breaks all the rules about using cast names not numbers.
If the movie script is put in the number one slot (my usual choice),
the loop breaks!
Apr 95/Mar 96

--initialisation

on startMovie
--set stageColor to white
set the stageColor = 0

--ID the movie
put the movieName into field “movieNameFLD”

--set up the animation puppets
puppetSprite 8, TRUE —the animated "number" bitmaps
set the castNum of sprite 8 = 1 —the “start button” bitmap
put 0 into word 6 of field “varWatchFLD” —the “rest” value of “myNum”
set the text of field “testConWatchFLD” = “Loop ready to execute”

end startMovie

on stopMovie
--tidyUp routines to write

end stopMovie

--handler definitions

--Version 1
--Using REPEAT WHILE… loop to switch castmembers of a sprite.
on replaceNumber1

--NB use of “magic numbers” - move the cast around and the code breaks!
set myNum = the castnum of sprite 8
repeat while myNum <= 6

set the castNum of sprite 8 = myNum
wait 10
updatestage
set myNum = myNum + 1

end repeat
wait 10
set the castNum of sprite 8 to 1

end replaceNumber1
--Call handler from Script channel for endless cycling
--and from puppet channel for clickable action.

--parameterised handler expects an integer for wait in ticks
on wait ticks

startTimer
repeat while the timer < 1 * ticks

--waiting for the timer
end repeat

end wait

--handler definitions end

TrailerNotes
Currently exploring three different ways of animating:
1. “repWithVis” type, using animated text & flowDiagram
2. The old “repWhileVis” method, using static text + watcher fields.
3. This movie type, trying to combine actual animation with animated Cast window
 and hilited code.
Last modified 18 Mar 96

Lingo Programming Learning Materials Page 39

tools. In a standard Director environment, text fields can easily be
adapted to hold and display the changing contents of variables etc.
Lingo has a rich set of text manipulation elements and the
technique is illustrated in several Program Visualisation movies.

Animating
This is perhaps the most ambitious method, requiring large
measures of technical expertise, system resources and creative
understanding of animation. It is potentially the most interesting
method and work is still proceeding at Coventry on developing
visualisations for tutorial purposes. The method is employed in
various ways in the Program Visualisation movies.

Director is a good tool for producing animation. This animation
is not usually produced with the intention of making a Lingo
program clear, (though it is of course the output of a program) but
there is no reson why it should not be used for this purpose.

Visualising data
Understanding the data that a program is handling is often the key
to writing the program in the most effective way. Director has a
great aid to visualising data in the form of the cast window:
nothing less than a very flexible visual data management system. If
anything, it is slightly too flexible: I have seen many supposedly
tutorial movies where castmembers are referred to only by number
in Lingo scripts and are scattered about all over the cast window.

In these materials, you will find some effort has been put into
giving the castmembers meaningful names and organising them
into functional groups. These names are then used in scripts. Study
the sample movies and devise your own ways of organising your
data - it is worth it in the long run!

Summary
Methods of representation that make use of pictures or animation
are obviously of particular interest to members of the art and
design community. They are likely to respond well to any form of
visual communication and should in turn have much to contribute
to the development of visualisation methods.

Program Visualisation

Lingo Programming Learning Materials Page 40

Fixing broken programs

Why do programs break?
Programs break because programmers are human! Common faults
in programs are:

1. Faulty logic
Even quite small Director projects can require complicated
scripts and even if the scripts themselves are simple, it
can be hard to follow the interaction between them. It is
therefore quite easy to introduce faulty logic.

2. Faulty coding
Coding requires a knowledge of language syntax and
accurate typing, as well as a grasp of program logic. It is
therefore quite easy to introduce faulty coding.

3. Failure to allow for unusual conditions or user error
This can be hard to spot as the problem condition may
only arise occasionally. Like faulty logic, it is a design
failure.

All of these faults are common even in professionally-written
programs. Expect to make many mistakes: learning from them is all
part of the fun of learning to program in Lingo.

Tools for fixing programs
Director 5 introduced several tools to help you fix broken
programs. Prior to this version, the only way to troubleshoot was to
use the TRACE facility in the Message window, which often
produced so much output it was hard to decipher, or insert tracer
code in your scripts, which was labour-intensive. The most
important new tools are the Debugger and the Watcher but the
Memory and Text Inspectors are also useful at times.

The debugger
The debugger bears a marked similarity to that incorporated
in MetroWerks’ CodeWarrior programming environment. Details of
appearance and operation are included in Appendix One - Update
and, of course, the Director documentation and help system.

Fixing Broken Programs

Lingo Programming Learning Materials Page 41

Essentially, a debugger is simply another computer program
which takes control of your own code and allows you to step
through it while watching the values of expressions and variables.
You decide where to interrupt the execution of your program by
setting what are known as ‘breakpoints’ and then step through the
code from there.

It is actually sensible to employ the debugger while developing
your program, that is, before it breaks. You will then be forced to
consider the logic of your program when trying to decide where to
set breakpoints. You will also learn a great deal about any
unnecessary loops or branches in your code; see expressions or
variables go outside their intended range, and so on.

If you don't employ the debugger during development your
programs will almost certainly break at some time. You will then be
given the option of calling up the debugger or simply examining
your code. The latter method often results in many hours spent
staring at your monitor and mentally going round in circles.

Fixing Broken Programs

Debugger window showing breakpoint (spot), current line (arrow),
handler chain and value of variables and expressions

Lingo Programming Learning Materials Page 42

Fixing Broken Programs

The watcher window
The Watcher window shows the values of simple expressions and
variables in your movie’s scripts. The variable or expression
appears at the left of the window followed by an equal sign (=) and
the expression or variable’s current value.

If Director can’t obtain the value of an expression or variable in
the current context, the term “<void> ” appears to the right of the
equal sign. Director updates values in the watcher window when
the user steps through lines of a script while in debug mode or
continuously while the movie plays. Some variables, such as the
time or the mouseH are updated even while the movie is not
playing.

The Watcher window is often preferable for simpler fault-finding
tasks since it occupies much less of the screen.

Examine the following movies:
D5_MOVIES:debuggerExample

D5_MOVIES:watcherExample

for examples of the respective tools in use.

The memory inspector
The memory inspector displays information about how much
memory is available to Director for your movie. It also indicates
how much memory different parts of the current movie use and the
total disk space the movie occupies.

Not all broken programs are the result of faulty code. Some
common faults in programs, for example playing multiple sounds,
occur because there is too little memory available. It is therefore

Watching too many

variables can decrease

Director’s response

noticeably. For

example, the cursor

may blink slowly or

windows may resize

sluggishly. Reducing

the amount of data the

watcher window must

continuously update

will immediately

improve Director’s

performance level.

Watcher window showing value of stageColor (255 = black)
and location of sprite (white spot at 100, 100)

Lingo Programming Learning Materials Page 43

Fixing Broken Programs

useful to be able to inspect the amount of memory available, if only
to eliminate shortage of memory as a cause of failure.

Total Memory shows you the total memory available in your
system. This number depends on the amount of
RAM and any System 7 virtual memory.

Physical Memory indicates the memory the amount of RAM
available on your computer. This is available
only when virtual memory is on.

Free Memory indicates how much more memory is currently
available in your system.

Other Memory indicates the amount of memory taken up by
the system and by other applications.

Used by Program indicates the amount of memory used by
Director.

Mattes & Thumbs shows how much memory is used by cast
members that use the Matte ink in the score
and by thumbnail images in the cast window.

The Memory Inspector window on machine with 32Mb RAM

Lingo Programming Learning Materials Page 44

Fixing Broken Programs

Cast & Score indicates the amount of memory used by the
cast members in the cast window and the
notation in the score window. Cast members
include all the artwork in the paint window, all
the text in the text windows, and any sounds,
palettes, buttons, digital video movies, or
linked files imported into the cast and currently
loaded into memory.

Screen Buffer shows how much memory Director reserves for
a “working area” while animating on the stage.

Partition Size shows the amount of memory allocated to
Director in the Get Info box. Available if
Temporary Memory is enabled.

Total Used indicates how much RAM is being used for a
movie.

The ‘Purge’ button removes all purgeable items from RAM,
including all thumbnail images in the cast window. All cast
members that have Unload (purge priority) set to a priority other
than “0-Never” (as specified in the Cast Member Properties dialog
box) are removed from memory. This is useful for gaining as much
free memory as possible before importing a large file. Edited cast
members don’t get purged.

Fields on stage
The introduction of new tools should not blind you to the value of
using fields on stage to record the value of variables and
expressions or to track progress through your programs.
Sometimes, this is more convenient than using the Debugger or
Watcher. The process also tests your understanding of your code.
It may also suggest elements of the user interface for your project.
Most of the project movies, in particular those in D5_MOVIES
demonstrate some aspect of this technique.

Summary
Fixing broken programs is an unavoidable part of programming.
While always something of a chore, new tools in Director 5 (and
more are promised in Director 6) make it easier than it used to be
for Lingo users. The process should be seen as an invaluable part
of learning to program in Lingo because of the increased insight
into program logic and grasp of Lingo syntax and conventions
which it brings.

Much of the text in this

section comes from

the Director QuickHelp

system. Macromedia

copyright gratefully

acknowledged.

Lingo Programming Learning Materials Page 45

Example Movies

What’s in the movies?
You will find examples of Lingo programming applied to controlling
sprites, controlling sound, acting conditionally on the basis of user
choices, acting conditionally on the basis of the position of the
cursor, soliciting and processing user input of text and so on.

The movies come from several different sources: some were
originally built to demonstrate solutions and techniques to
students, others came from quick fixes to problems in student
movies, and some are from students themselves. The movies
therefore vary quite a lot in style and they do not all embody the
best practice encouraged in this handbook.

Further work
You are encouraged to examine the samples with a critical eye and
to make improvements wherever you can. In my view, this is the
best way to learn how to program in Lingo, provided you also
acquire an understanding of the principles of good programming.

This is essential because it often seems like too much trouble to
do things “properly”. While the “quick and dirty ” solution is fine for
a small and well-defined problem, it will not suffice for any sub-
stantial Lingo-based project. Unfortunately, the Director/Lingo
environment almost encourages unsound practice. It is a highly
interactive and media-rich environment, so novices are tempted to
rush into coding without proper planning. As with all design, there
is no one right solution to a programming problem but this is
almost always the wrong approach.

Resist the temptation. Check out some of the sources in the
Annotated Bibliography before getting too deeply into Lingo itself.
Avoid turning your programming project into a house of cards,
waiting to collapse as soon as you add one more element.

At the time of writing, Macromedia are reportedly extending
Lingo to cover their whole product range (Common Lingo). A sound
understanding of Lingo programming should therefore lead to
good employment prospects, to say nothing of increased creative
control of Director and other Macromedia products.

Example Movies

Lingo Programming Learning Materials Page 46

Annotated Bibliography

On Lingo:
My local branch of Blackwells listed eight books dealing with Lingo
on 24 April 1997: a very different situation from that obtaining at
the time Edition 1.0 was released. Note that the supplied Director
documentation is essential for reference, though less useful in a
tutorial context.

MACROMEDIA, 1996?
Lingo for Director 5�
Macromedia Inc., San Francisco.
£42.98.

CALLERY, M., 1996.
Learning Lingo
Addison-Wesley, Reading.
£29.50.

MACROMEDIA, 1997.
Lingo Authorized
Macromedia Inc., San Francisco.
£31.95.

JULIUS T., date unknown
Lingo!
New Riders.
£41.99.

SMALL, P., 1996.
Lingo Sorcery
John Wiley & Sons, Chichester.
£24.95. Excellent but idiosyncratic treatise on object-oriented

programming in Lingo. Especially good on working with lists.

THOMPSON, J.T. & GOTTLIEB, S., 1996.
Macromedia Director Lingo Workshop (2nd ed.)
Hayden Books, Indianapolis.
Mid-price at around £50.00.

Very useful tutorial and reference material - I still use the first edition.

CD packed with example movies (arranged in Chapter order).

G/MATTER, 1995. (formerly Gray Matter Design)
The MediaBook CD for Director
Gray Matter Design, San Francisco.
Expensive at around £250.00.

Tutorial and interactive dictionary, plus development tools.

Annotated Bibliography

Lingo Programming Learning Materials Page 47

On-line help and information:
There are WWW sites at:

http://www.macromedia.co/director/

http://www.mcli.dist.maricopa.edu/director/

which, for those with web browsers, have taken over from:
direct-l

All are useful and others appear from time to time. Be prepared for
congestion and slow response from the WWW sites and a flood of
incoming postings from the mailing list.

A Web document titled “Director Scripting for Authors and
Artists” by Gary Rosenzweig appeared at:

http://www.csn.net/~rosenz/lingo.html

This is organised as thirty-two short chapters, which can be
downloaded and formatted for print to make a document of sixty
pages. There are no sample movies but plenty of good code
fragments. Check it out - I believe it is also available in print.

A very active developer and distributor of Director Xtras is
g/matter Inc. Their site is:

http://www.gmatter.com/

and they maintain a mailing list called xtras -l . Details and
subscription instructions are available from the g/matter website.

A technician at Coventry School of Art & Design, Mark Peden,
has developed a number of interesting ‘artificial life’ animations and
a colour conversion palette for Director users. See his work at:

http://www.csad.coventry.ac.uk/~mep/amoebic.lifeforms/

start.html

http://www.csad.coventry.ac.uk/~mep/new.forms/

colorwall.html

http://www.csad.coventry.ac.uk/~mep/tools/palette.html

Addresses of other sites of interest may be distributed from time to
time if there is enough demand. Email me:

iphillips@patrol.i-way.co.uk

about your favourite site(s), books, or other support materials.

Annotated Bibliography

http://www.macromedia.co/director/
http://www.mcli.dist.maricopa.edu/director/
http://www.csn.net/~rosenz/lingo.html
http://www.gmatter.com/
http://www.csad.coventry.ac.uk/~mep/amoebic.lifeforms/
start.html
http://www.csad.coventry.ac.uk/~mep/new.forms/
colorwall.html
http://www.csad.coventry.ac.uk/~mep/tools/palette.html

Lingo Programming Learning Materials Page 48

Annotated Bibliography

On programming in general:
APPLEMAN, D., 1994.
How Computer Programming Works
Ziff-Davis, Emeryville, Ca.
Highly visual approach but sometimes rather confusing.

CHANTLER, 1981.
Programming Techniques and Practice
National Computing Centre, Manchester.
Old and with terrible graphics but very clear summary of methods of

representing algorithms and programs.

HAIGH, J., 1995.
Designing Computer Programs
Edward Arnold, London.
Business-oriented but up to date, fairly visual, and English.

KNUTH, D., 1984 [2].
“Literate Programming” in
Computer Journal, 27 No. 2, May 1984, p109.
Classic stuff on making programs readable and intelligible.

KERNIGHAN, B. & PLAUGER, P., 1978.
The Elements of Programming Style
McGraw-Hill, New York.
More good stuff on making programs readable and intelligible.

Like KNUTH, it does not date.

MEEK, N., HEATH, P. & RUSHBY, N., 1983.
Guide to Good Programming Practice
Ellis Horwood, Chichester.
A good companion to CHANTLER. Not visual.

PATTERSON, D., KISER, D. & SMITH, N., 1989.
Computing Unbound: Using Computers in the Arts and Sciences
W.W. Norton, New York
Despite title does not contain much of direct reference to the visual arts

but very good on algorithm development.

PHILLIPS, I., 1996.
“Computer program visualisation in art and design computing” in
Proceedings of Eurographics UK 96, London.
A review of various visualisation methods. Expands on themes contained in

the “Program Visualisation” section of the project handbook.

Lingo Programming Learning Materials Page 49

On object-oriented programming:
BLAIR, G., GALLAGHER, J., HUTCHISON, D., and SHEPHERD, D.,
1991.
Object-Oriented Languages, Systems and Applications
Pitman, London.
Very clear and thorough primer in OOP.

BOOCH, G., 1991.
Object Oriented Design, With Applications
Benjamin/Cummings, Redwood City, CA.
Authoritative and well-written. Pretty much everything you need to know

but dense and therefore hard going in some places. One of the best parts

is the section on Applications, with lengthy worked examples. These have

been updated for the new edition now out: at first glance, the originals

look better in many respects.

For Lingo OOP, there is quite a lot of stuff available from the on-line
sources on parent and child scripts, ancestry, birthing etc.

Annotated Bibliography

Lingo Programming Learning Materials Page 50

Appendix One - Update

Summary of Lingo-related changes in Director 5
Director 5 introduced many changes and new features. The most
relevant features from the point of view of Lingo programming are:

New, changed, and outdated Lingo
The introduction of Debugger and Watcher windows
Enhancements to the Message and Script windows
Multiple casts
XObjects superseded by Xtras
Improved Help system
Lingo FAQs (Frequently Asked Questions) in the Help

These features are summarised below and dealt with in more detail
in the printed and online Director documentation. Illustrations and
the reference material in this Appendix are taken from the Director
QuickHelp screens: copyright is acknowledged where necessary.

New, changed, and outdated Lingo
There are over 100 additions or changes to Lingo in Director 5,
including a new logic structure (CASE, a multi-way branch) and new
ways of controlling QuickTime sprites. It would have been a near-
impossible task to predict the way all these changes might have to
be confronted in developing Director projects, so I have chosen to
hilight those changes I consider of most relevance to the novice
Lingo programmer.

There have also been improvements in the Lingo programming
environment, listed in this section and dealt with in more detail in
Fixing Broken Programs, which speed the process of coding and
testing.

Appendix One - Update

QuickHelp Screens
The QuickHelp screens reproduced in this section do not render well onscreen in PDF format. Consult the originals.

Lingo Programming Learning Materials Page 51

Appendix One - Update

The following elements are new in Director 5.0 or have had
functionality added since Director 4.0:

lineCount of member
linePosToLocV
lineSize of member
loc of sprite
locToCharPos
locVToLinePos
loop of member

margin of member
media of member
member
memberNum of sprite

name of CastLib
new
number of CastLib
number of castLibs
number of members of castLib

on activateWindow
on closeWindow
on moveWindow
on resizeWindow
on rightMouseDown
on rightMouseUp
on zoomWindow
openWindow
otherwise

pageHeight of member
paletteMapping
pattern
paletteRef
the platform
preLoadMode of CastLib
preLoadMovie

rect of member
rightMouseDown, the
rightMouseUp, the

sampleRate
sampleSize
save castLib
score
scoreSelection
scriptsEnabled
scriptType
scrollByLine
scrollByPage
scrollTop of member
selection of castLib
setCallBack
shapeType
sound of member

timeScale of member
trackCount(member)

activeWindow
autoTab of member

beginRecording
border of member
boxDropShadow
boxType of member
buttonType

cancelIdleLoad
case
the castLibNum of sprite
center of member
changeArea of member
channelCoun of member
charPosToLoc
chunkSize of member
clearFrame
crop of member

deleteFrame
desktopRectList
digitalVideoTimeScale
digitalVideoType of member
dropShadow of member
duplicate(list)
duplicateFrame
duration of member

editable of member
emulateMultiButtonMouse
end case
endRecording

fileName of castLib
filled of member
finishIdleLoad
frameLabel
framePalette
frameScript
frameSound1
frameSound2
frameTempo
frameTransition
frontWindow

height of member

idleHandlerPeriod
idleLoadDone
idleLoadMode
idleLoadPeriod
idleLoadTag
idleReadChunkSize
insertFrame

keyPressed

Lingo Programming Learning Materials Page 52

trackCount(sprite)
trackEnabled
trackNextKeyTime
trackNextSampleTime
trackPreviousKeyTime
trackPreviousSampleTime
trackStartTime(member)
trackStartTime(sprite)
trackStopTime(member)
trackStopTime(sprite)
trackText

trackType (member)
trackType (sprite)
transitionType of member
type of member

unloadMovie
updateFrame
updateLock

windowPresent
wordWrap of member

Lingo that has changed in version 5.0
The following terms have been revised to keep terminology clear
now that Director has multiple casts. The older terms are still
supported, but they will become obsolete and should be avoided:

Director 4.0 Term Director 5.0 Term
backColor of cast backColor of member
cast member
castmembers number of members
castNum of sprite memberNum of sprite
castType of cast type of member
center of cast center of member
controller of cast controller of member
crop of cast crop of member
depth of cast depth of member
duplicate cast duplicate member
duration of cast duration of member
erase cast erase member
fileName of cast fileName of member
foreColor of cast foreColor of member
frameRate of cast frameRate of member
height of cast height of member
hilite of cast hilite of member
loaded of cast loaded of member
loop of cast loop of member
modified of cast modified of member
move cast move member
name of cast name of member
number of cast number of member
number of castmembers number of members
palette of cast palette of member
picture of cast picture of member
preLoad of cast preLoad of member
preLoadCast preLoadMember
purgePriority of cast purgePriority of member
scriptText of cast scriptText of member
size of cast size of member
sound of cast sound of member
text of cast text of member
textAlign of field alignment of member
textFont of field font of member
textHeight of field lineHeight of member
textSize of field fontSize of member
textStyle of field fontStyle of member
video of cast video of member
width of cast width of member

Appendix One - Update

Lingo Programming Learning Materials Page 53

Lingo that is outdated in version 5.0
The following elements are obsolete and no longer supported:

birth
instance
factory
closeDA
openDA
when...then constructs

The introduction of Debugger and Watcher windows
Developing and debugging Lingo programs was always hampered
by the need to insert code to signal entry to or exit from parts of
the program and/or output the values of variables and expressions.

A reasonable debugger has been added in Director 5 which
allows the setting of breakpoints and line by line execution of
scripts: both extremely helpful when trying to fix broken programs.
A separate Watcher window can be set up to track the values of
variables and expressions. See the illustrations taken from
QuickHelp on Pages 55 and 56.

Enhancements to the Message and Script windows
The Message and Script windows now include:

Alphbetical listing of Lingo commands
Categorised listing of Lingo commands
Trace button (Message window only)
Go To Handler button (Message window only)
Breakpoint toggle button (Script window only)
Button to call up Watcher window
Button to recompile all scripts (Script window only)

Message window (Message window (Window menuWindow menu)) Command-MCommand-M

The message window is a convenient place to experiment with and test
Lingo scripts. Actions occur immediately when you press the Return
key, so you can see the results before you insert your scripts into a
movie. This allows you to see the results of any script, including
whether it is a valid script.

For descriptions of the tools on the message toolbar, see the Message Message
toolbartoolbar topic.

Appendix One - Update

Lingo Programming Learning Materials Page 54

Script window (Script window (Window menuWindow menu)) Command-0Command-0

Use the script window to enter and edit Lingo scripts. A script can
contain up to 32K of text.

For a description of the buttons at the top of the script window, see the
cast windowcast window topic.

For descriptions of the tools on the script toolbar, see the Script Script
toolbartoolbar topic.

The help topics for LingoLingo commands include examples
that you can paste into your scripts and use.

Director saves changes you make in the script window when you click
anywhere outside of the window, close it, click the Previous or Next
buttons to go to a different script, or if you choose Recompile All
Scripts in the Control menu.

Double-clicking a cell in the script channel opens the
script window.

Script Cast Member PropertiesScript Cast Member Properties
DebuggerDebugger
MessageMessage
WatcherWatcher

Appendix One - Update

Lingo Programming Learning Materials Page 55

Debugger window (Debugger window (Window menuWindow menu))
Command-`Command-`

The debugger helps with troubleshooting. The window helps to locate and
correct bugs in lingo scripts. It includes several tools that let you:

• See the current line of Lingo

• Run the current handler line by line

• Track the sequence of handlers that were called as part of getting to
the current handler

• Display the value of any local variable, global variable, or
property related to the Lingo that you’re investigating

• Open related windows such as the watcher window and script
window.

Click part of the illustration for more information:

Any of the following actions opens the debugger window:

• Choosing Debugger from the Window menu

• Encountering a breakpoint in a script

• Clicking Debugger in an error message that appears when Director
encounters a syntax error in a script.

You can’t edit the script directly in the debugger; you must return to
the script window.

ScriptScript
MessageMessage
WatcherWatcher

Appendix One - Update

Lingo Programming Learning Materials Page 56

Watcher window (Watcher window (Window menuWindow menu)) Command-Shift-`Command-Shift-`

The Watcher window shows the values of simple expressions and
variables in the movie’s scripts.

The variable or expression appears at the left of the window followed by
an equal sign (=) and the expression or variable’s current value. If
Director can’t obtain the value of an expression or variable in the
current context, the term “<void>” appears to the right of the equal
sign. Director updates values in the watcher window when the user
steps through lines of a script while in debug mode or continuously
while the movie plays. Some variables, such as the time or the
mouseH are updated even while the movie is not playing.

Note: Note: Watching too many variables can decrease Director’s response
noticeably. For example, the cursor may blink slowly or windows may
resize sluggishly. Reducing the amount of data the watcher window must
continuously update will immediately improve Director’s performance
level.

To add variables or expressions to the list in the watcher To add variables or expressions to the list in the watcher
window by selecting them in the script window:window by selecting them in the script window:

1. Open a script window in which the variable or expression appears.

2. Select the variable or expression.

3. Click the Watch Expression button at the top of the script
window.

Director adds the selected variables or expressions to the list in
the watcher window and also displays those changes in the variable
pane.

To change the value of a variable or expression:To change the value of a variable or expression:

1. Select the value or expression in the watcher window.

2. Type the new value in the field next to the Set button.

3. Click Set.

To add variables or expressions to the list directly from To add variables or expressions to the list directly from
the watcherthe watcher
window:window:

1. Type the variable or expression in the field to the left of the Add
button.

2. Click Add.

The variable or expression appears in the list.

To remove a variable or expression:To remove a variable or expression:

1. Select the variable or expression in the watcher window.

2. Click Remove.

Appendix One - Update

Lingo Programming Learning Materials Page 57

Multiple casts
You can create multiple casts for your Director 5.0 movies. There
are two types of casts, internal and External. Working with cast
members within the cast window is the same regardless of whether
the cast is internal or external.

Prior to version 5.0 of Director, all casts were internal and only
one cast was allowed per movie. The only way to share
castmembers was to create a movie called SHARED.DIR, which was
empty apart from the Cast. Members of this cast could be shared
with other movies in the same folder. This was a clumsy
mechanism and multiple casts are a great improvement.
See the movies:

D5_MOVIES:multipleCasts_01

D5_MOVIES:multipleCasts_02

for example usage. See also Page 60 for more detailed information
on multiple casts.

XObjects superseded by Xtras
Xtras are software modules that extend Director’s functionality.
Previously, such extensions were known as XObjects. Xtras are
stored in one of two places and appear under the “Xtras” item on
the menubar.

They are one of the types of XLibrary (external code library)
supported by Director. Six Xtras and three Xlibs are included as
standard with Director 5, providing facilities for reading/writing
text files; printing; and managing databases as well as some other
tasks.

Improved Help system
The QuickHelp system in Director 5 is faster and more
comprehensive than the system in Director 4. Help screens can be
copied as text or pictures and used elsewhere, as has been done in
this handbook. See the next page for an illustrationof the main
Lingo help screen.

Lingo FAQs (Frequently Asked Questions) in the Help
There are five rather arbitrary questions about Lingo in the FAQ
section of the Help system, as well as some Lingo-related questions
scattered about the other sections. See Page 59 for an illustration.

Appendix One - Update

Lingo Programming Learning Materials Page 58

Click a letter (above) to view Lingo elements Click a letter (above) to view Lingo elements
alphabetically.alphabetically.

Or select one of the categories below to see a list of Or select one of the categories below to see a list of
relevant Lingo elements:relevant Lingo elements:

Cast membersCast members Movie controlMovie control
CastsCasts Movie in a windowMovie in a window
Code structures & syntaxCode structures & syntax NavigationNavigation
Computer & monitorComputer & monitor New Lingo elementsNew Lingo elements
Digital videoDigital video OperatorsOperators
External filesExternal files Parent scriptsParent scripts
FieldsFields PuppetsPuppets
FramesFrames Score generationScore generation
Interface elementsInterface elements SpritesSprites
Lingo that has changed in 5.0Lingo that has changed in 5.0 SoundSound
Lingo that is outdatedLingo that is outdated StringsStrings
ListsLists TimeTime
Math & logical operatorsMath & logical operators User interactionUser interaction
Memory managementMemory management VariablesVariables

For general information on using LingoLingo, see the Lingo BasicsLingo Basics topic.

The Lingo menu appears when you click and hold the Lingo button in the
script window. This menu displays the complete set of Lingo commands
that you can use to create scripts for your movie.

Choosing an element from the Lingo menu enters it into a script at the
insertion point. This saves you from typing the command and also
eliminates typing.

Note: Note: You can use the Copy Topic Text command from the Help file’s
Edit menu to copy Lingo examples from the Help topics; then you can
paste the example into the Director script window and modify it for
your use.

Appendix One - Update

Lingo Programming Learning Materials Page 59

FAQs — LingoFAQs — Lingo

How do I find the movie script?

How do I use a custom cursor in Director?

What is a mask cast member, and how do I make one?

I have a rollOver test in a frame that works properly,
but when I jump to a new frame, that rollOver area is still
being evaluated even though the sprite is no longer there. This

also happens with the cursor of sprite property.

Where is a list of keyCodes?

Appendix One - Update

Lingo Programming Learning Materials Page 60

Understanding internal and external casts
The multiple cast mechanism is a great improvement over the
SHARED.DIR mechanism used prior to Director 5.

Internal casts
When you create a new movie, Director automatically creates an
internal cast. Internal casts are stored inside the movie file. When
you save a movie, all internal casts are saved. When you create a
projector, they are stored inside the projector file. Internal casts
cannot be shared by other movies.

External casts
External casts are stored outside of the movie file. They can be
shared between movies or serve as libraries for commonly used
movie elements. They are also useful for distributing work in a
project team.

When you create an external cast by choosing New Cast from the
File menu, you have the choice of linking or not linking the cast to
the current movie.

• If you link an external cast to the current movie, Director
opens the cast every time you open the movie. If it can’t
find the cast in the original location, it prompts you to
locate the cast file. When you save a movie, all linked
external casts are saved as well. The first time you save a
movie with a linked external cast file, Director prompts
you to enter a file name and choose a location for the file.

• If you don’t link an external cast to a movie, you must
open it separately with the Open command on the File
menu, and save it by activating the window and choosing
Save from the File menu. It is not saved along with the
movie when you choose Save. If you move a cast member
to the stage or score from an unlinked external cast,
Director prompts you to link the cast to the current movie.

You can link and unlink existing casts to the current movie with the
Movie Casts command on the Modify menu.

Moving members between casts
Multiple casts provide a convenient way of moving members
around between otherwise unrelated movies or projects. Members
can be ‘OPTION-dragged’ from one cast to another to copy them, or
normal COPY and PASTE procedures can be used. Members can also
be deleted in the usual way. Remember to save any unlinked
external cast(s) as soon as operations are completed.

Appendix One - Update

Remember to see the

following in the

D5_MOVIES folder:

multipleCasts_01

multipleCasts_02

for example usage of

multiple casts.

Lingo Programming Learning Materials Page 61

Xtras
Xtras are software modules that extend Director’s functionality. An
Xtra file can contain one or more such modules. There are four
types of Xtras:

• Transition Xtra cast members, which supply transitions in
addition to predefined transitions available in the Frame
Properties:Transition dialog box. After they are used in the
score’s transition channel, they appear in the cast window
the same as any cast member.
An Xtra transition cast member can have its own custom
properties, properties dialog box, animated thumbnail,
cast window icon, and About box. Open the dialog box
that sets properties by opening the Frame
Properties:Transition dialog box and then clicking Options.

• Xtra cast members, which can be a wide range of objects
such as databases, text managers, or special graphics.
They appear in the Insert menu after the Xtra is loaded. An
Xtra can create more than one menu item if it is designed
to do so.
Add an Xtra cast member to a cast by choosing the Xtra
from the Insert menu. Cast member Xtras are sometimes
called sprite Xtras because they can be assigned to the
score after they are in the cast window.
An Xtra cast member can have its own custom properties,
properties dialog box, media editor, animated thumbnail,
cast window icon, and About box. Open the dialog box
that sets the Xtra’s properties by opening the cast
member’s Properties dialog box and then clicking Options.
Open the Xtra’s media editor by double-clicking the cast
member’s thumbnail in the cast window.

• Lingo Xtras, which add Lingo elements to Director’s built-
in Lingo.

• Tool Xtras, which you can use during authoring. To open a
tool Xtra, choose it from the Xtras menu.

Providing Xtras
When Director launches, it automatically registers Xtras that are in
either of two places:

• The Xtras folder in the same folder that contains the
Director application or projector

• One of the following folders, depending on which platform
Director is running on:
For Windows 95 and Windows NT, the Xtras folder:

Program Files\Common Files\Macromedia\Xtras

For Windows 3.1, the folder:
Windows\Macromed\Xtras

For Macintosh and Power Macintosh, the folder:
System Folder:Macromedia:Xtras

Appendix One - Update

Lingo Programming Learning Materials Page 62

To make an Xtra available, place its file in one of these folders
before you launch Director. (The Xtra can be in a folder within the
Xtras folder up to five layers deep.) Director also automatically
closes these Xtras when the application quits.

You can also open Lingo Xtras after Director is running by using
the openXlib command. The Lingo Xtra can be in any folder if you
open it this way. However, you must use the closeXlib command to
close the Xtra after Director is finished with it.

Xtras aren’t packaged in projectors. The Xtras must be in an
Xtras folder in the same folder as the projector or an Xtras folder
that is valid for the current operating system.

If an Xtra that the movie uses is missing, an alert appears when
the movie or external cast file opens. For missing Xtra transition
cast members, the movie performs a simple cut transition instead.
For other missing Xtra cast members, Director displays a red “X” on
the stage as a placeholder for the missing Xtra.

Copies of the same Xtra can have different filenames or have the
same filename but reside in different folders. If they are used in the
same movie, Director detects that such Xtras are duplicates and
displays an alert. You can avoid this situation by just deleting any
duplicate Xtras if this occurs.

Creating Xtras by using the new function
You can create a new instance of an Xtra by using the new function.
The specific way you do this depends on the Xtra’s type.

You can create new transition Xtras and cast member Xtras just
as you can built-in cast members. For transition cast members, use
new and the symbol #transition. Other cast member Xtras have
their own symbols specified by the developer.

For example, a QuickDraw 3D cast member could be given the
symbol #quickDraw3D. In this case, to create a new cast member,
you’d use the statement new(#quickDraw3D).

This statement creates a new instance of the Xtra cast member
which has the symbol #math:

new(#math)

After the cast member is created, you can assign it content the
same way as you do for other castmembers.

You create new instances of Lingo Xtras by using the new
function and the term xtra as the first parameter. For example, this
statement creates a new instance of the Lingo Xtra stringReader:

set string1 = new(xtra “stringReader”)

For instances of Lingo Xtras created by using the new function, you
must set the variable that contains the Xtra to 0 before you use the
closeXlib command to delete the Lingo Xtra.

See the Director 5 documentation on “Authoring from Lingo” for
more information about creating cast members from Lingo.

Appendix One - Update

Lingo Programming Learning Materials Page 63

Checking which Xtras are available
Lingo can tell you how many Xtras are available, the name of each,
and what each Xtra contains.

The number of xtras property indicates how many Xtras are
available in the current movie.

The name of xtra property determines the name of a specific
Xtra. The name of xtra property can be tested and set.

For example, the following repeat loop displays the name of
each Xtra in the message window:

repeat with counter = 1 to (the number of xtras)

put the name of xtra counter

end repeat

The showXLib command displays each Xtra file and its contents.
For example, suppose that a Lingo Xtra Friends is in the folder
c:\Xtra Reserve. If the Xtra file Friends contains the modules Fred
and Joe, the showXlib command would give the following results:

Director:Xtras:Friends

xtra Fred

xtra Joe

Use mMessageList to display message with information about the
Xtra. For example, the statement put mMessageList(xtra “Fred”)
displays information about the Xtra Fred.

For more information on Xtras
For a listing of Xtras available for Director, see the Macromedia Web
site at:

http://www.macromedia.com

You will also find information on the Xtra Developer’s Kit (XDK). The
g/matter website:

Appendix One - Update

http://www.gmatter.com

is also worth visiting (see the Annotated Bibliography). The
XtraNet Xtra will be of particular interest to those wishing to
connect a Director project to the Internet. Novice programmers will
however usually need help installing Xtras and writing the
appropriate scripts and handlers.

	Introduction
	Why learn to program in Lingo?
	Objectives and intended outcomes
	Approach and methods
	Target audience
	How the project started
	Summary of changes from Edition 1.0
	Looking forward to Director 6
	Limitations of the materials

	How to use the materials
	Assumed knowledge and equipment
	Production note
	Organisation of the materials
	Accessing the movies

	Getting started with Lingo
	Determine your objectives
	Assess your knowledge and experience
	Set up your working environment
	Using the Message window
	Coping with the unknown Enter
	Learning more about Lingo elements
	Using the Message window with cast and score
	Summary

	Algorithm Development
	What is an algorithm?
	Where do I start?
	Stepwise refinement of the algorithm
	Variables
	Controlling execution flow
	Summary

	Basic Scripting
	First things first
	Learning the jargon
	What’s in this section?
	Useful things to know
	Controlling execution flow in scripts
	Other sources of information

	Program Visualisation
	What is program visualisation?
	What methods are used in these materials?
	Strengths and weaknesses of visualisation methods
	Visualising data
	Summary

	Fixing broken programs
	Why do programs break?
	Tools for fixing programs
	Debugger window
	Watcher window
	Memory Inspector window

	Summary

	Example Movies
	What’s in the movies?
	Further work

	Annotated Bibliography
	On Lingo
	On-line help and information
	On programming in general
	On object-oriented programming

	Appendix One - Update
	Summary of Lingo-related changes in Director 5
	New, changed, and outdated Lingo
	Lingo that has changed in version 5.0
	Lingo that is outdated in version 5.0
	The introduction of Debugger and Watcher windows
	Enhancements to the Message and Script windows
	Multiple casts
	XObjects superseded by Xtras
	Improved Help system
	Lingo FAQs (Frequently Asked Questions) in the Help

	Understanding internal and external casts
	Internal casts
	External casts
	Moving members between casts

	Xtras
	Providing Xtras
	Creating Xtras by using the new function
	Checking which Xtras are available
	For more information on Xtras

